1£®Éèx¡ÊR£¬¼Ç²»³¬¹ýxµÄ×î´óÕûÊýΪ[x]£¬Èç[0.9]=0£¬[2.6]=2£¬Áî{x}=x-[x]£®Ôò{$\frac{\sqrt{5}+1}{2}$}£¬[$\frac{\sqrt{5}+1}{2}$]£¬$\frac{\sqrt{5}+1}{2}$£¨¡¡¡¡£©
A£®¼ÈÊǵȲîÊýÁÐÓÖÊǵȱÈÊýÁÐB£®¼È²»ÊǵȲîÊýÁÐÒ²²»ÊǵȱÈÊýÁÐ
C£®ÊǵȲîÊýÁе«²»ÊǵȱÈÊýÁÐD£®ÊǵȱÈÊýÁе«²»ÊǵȲîÊýÁÐ

·ÖÎö ÓÉж¨Ò廯¼ò{$\frac{\sqrt{5}+1}{2}$}£¬[$\frac{\sqrt{5}+1}{2}$]£¬È»ºó½áºÏµÈ²îÊýÁк͵ȱÈÊýÁеĸÅÄîÅжϣ®

½â´ð ½â£ºÓÉÌâÒâ¿ÉµÃ{$\frac{\sqrt{5}+1}{2}$}=$\frac{\sqrt{5}+1}{2}-1=\frac{\sqrt{5}-1}{2}$£¬[$\frac{\sqrt{5}+1}{2}$]=1£¬
ÓÖ${1}^{2}=\frac{\sqrt{5}-1}{2}¡Á\frac{\sqrt{5}+1}{2}$£¬
¡à$\frac{\sqrt{5}-1}{2}£¬1£¬\frac{\sqrt{5}+1}{2}$¹¹³ÉµÈ±ÈÊýÁУ¬
¶ø$\frac{\sqrt{5}-1}{2}+\frac{\sqrt{5}+1}{2}¡Ù2$£¬
¡à{$\frac{\sqrt{5}+1}{2}$}£¬[$\frac{\sqrt{5}+1}{2}$]£¬$\frac{\sqrt{5}+1}{2}$ÊǵȱÈÊýÁе«²»ÊǵȲîÊýÁУ®
¹ÊÑ¡£ºD£®

µãÆÀ ±¾Ì⿼²éµÈ²îÊýÁк͵ȱÈÊýÁеĸÅÄÊÇ»ù´¡µÄ¼ÆËãÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Éèµ±x=¦Èʱ£¬º¯Êýf£¨x£©=3sinx+4cosxÈ¡µÃ×îСֵ£¬Ôòsin¦È=£¨¡¡¡¡£©
A£®$\frac{3}{5}$B£®$\frac{4}{5}$C£®$-\frac{3}{5}$D£®$-\frac{4}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖª200Á¾Æû³µÍ¨¹ýijһ¶Î¹«Â·Ê±µÄʱËÙµÄÆµÂÊ·Ö²¼Ö±·½Í¼ÈçͼËùʾ£¬
£¨1£©¸ù¾Ý´ËƵÂÊ·Ö²¼Ö±·½Í¼£¬¼ÆËãһϴ˶ι«Â·Í¨¹ýµÄ³µÁ¾µÄʱËÙµÄÆ½¾ùÊý£¬ÖÚÊý£¬ÖÐλÊý£»
£¨2£©ÏÖÏëµ÷²é³µÁ¾µÄijÐÔÄÜ£¬ÈôÒªÔÚËٶȽϸߵÄ2¸öʱËÙ¶ÎÖУ¬°´ÕÕ·Ö²ã³éÑùµÄ·½·¨£¬³éÈ¡6Á¾³µ×öµ÷²é£¬¼ÆËã¸÷ʱËٶα»³éÈ¡µÄ³µÁ¾µÄ¸öÊý£»
£¨3£©Èô½«Õâ6Á¾³µ·Ö±ð±àºÅΪ1£¬2£¬3£¬4£¬5£¬6£¬ÇÒ´ÓÖгéÈ¡2Á¾³µ£¬ÔòÕâÁ½Á¾³µµÄ±àºÅÖ®ºÍ²»´óÓÚ10µÄ¸ÅÂÊÊǶàÉÙ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=ax3+$\frac{1}{2}$x2ÔÚx=-1´¦È¡µÃ¼«´óÖµ£¬¼Çg£¨x£©=$\frac{1}{f¡ä£¨x£©}$£®³ÌÐò¿òͼÈçͼËùʾ£¬ÈôÊä³öµÄ½á¹ûS£¾$\frac{2014}{2015}$£¬ÔòÅжϿòÖпÉÒÔÌîÈëµÄ¹ØÓÚnµÄÅжÏÌõ¼þÊÇ£¨¡¡¡¡£©
A£®n¡Ü2014£¿B£®n¡Ü2015£¿C£®n£¾2014£¿D£®n£¾2015£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=sin£¨2x+$\frac{¦Ð}{6}$£©-cos2x£®
£¨1£©Çóf£¨x£©µÄ×îСÕýÖÜÆÚ¼°x¡Ê[$\frac{¦Ð}{12}$£¬$\frac{2¦Ð}{3}$]ʱf£¨x£©µÄÖµÓò£»
£¨2£©ÔÚ¡÷ABCÖУ¬½ÇA¡¢B¡¢CËù¶ÔµÄ±ßΪa¡¢b¡¢c£¬ÆäÖнÇCÂú×ãf£¨C+$\frac{¦Ð}{4}$£©=$\frac{\sqrt{3}-2}{4}$£¬ÈôS¡÷ABC=$\sqrt{3}$£¬c=2£¬Çóa£¬b£¨a£¾b£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Ë«ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨{a£¾0£¬b£¾0}£©$µÄÓÒ½¹µãΪF£¨c£¬0£©£®
£¨1£©ÈôË«ÇúÏßµÄÒ»Ìõ½¥½üÏß·½³ÌΪy=xÇÒc=2£¬ÇóË«ÇúÏߵķ½³Ì£»
£¨2£©¾­¹ýÔ­µãÇÒÇãб½ÇΪ30¡ãµÄÖ±ÏßlÓëË«ÇúÏßÓÒÖ§½»ÓÚµãA£¬ÇÒ¡÷OAFÊÇÒÔAFΪµ×±ßµÄµÈÑüÈý½ÇÐΣ¬ÇóË«ÇúÏßµÄÀëÐÄÂÊeµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èô¹ØÓÚxµÄ²»µÈʽ$|{x-\frac{1}{2}}|+|{x+\frac{3}{2}}|£¼k$µÄ½â¼¯²»Êǿռ¯£¬ÔòʵÊýkµÄȡֵ·¶Î§ÊÇk£¾2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖª²»µÈʽx2-2ax+a£¾0£¨x¡ÊR£©ºã³ÉÁ¢£¬Ôò²»µÈʽa2x+1£¼a${\;}^{{x}^{2}+2x-3}$£¼1µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
A£®£¨1£¬2£©B£®£¨-$\frac{1}{2}$£¬2£©C£®£¨-2£¬2£©D£®£¨-3£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªÃݺ¯Êýf £¨ x £©¹ýµã£¨2£¬$\sqrt{2}$£©£¬Ôòf £¨ 9 £©µÄֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®1C£®3D£®6

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸