| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $-\frac{3}{5}$ | D. | $-\frac{4}{5}$ |
分析 利用辅助角公式将函数化为y=Asin(ωx+φ)的形式,结合三角函数的图象和性质,求出f(x)的最小值.解出θ,
解答 解:$f(x)=3sinx+4cosx=5({\frac{3}{5}sinx+\frac{4}{5}cosx})=5sin({x+φ})$,其中$sinφ=\frac{4}{5}$,$cosφ=\frac{3}{5}$,
由f(θ)=5sin(θ+φ)=-5,
可得sin(θ+φ)=-1,
∴$θ+φ=-\frac{π}{2}+2kπ$,k∈Z,
$θ=-φ-\frac{π}{2}+2kπ$,k∈Z,
∴$sinθ=sin({-φ-\frac{π}{2}+2kπ})=sin({-φ-\frac{π}{2}})=-cosφ=-\frac{3}{5}$,
故选:C.
点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于基础题.
科目:高中数学 来源: 题型:解答题
| 分数 | [50,59) | [60,69) | [70,79) | [80,89) | [90,100) |
| 甲班频数 | 5 | 6 | 4 | 4 | 1 |
| 乙班频数 | 1 | 3 | 6 | 5 | 5 |
| 甲班 | 乙班 | 总计 | |
| 成绩优良 | |||
| 成绩不优良 | |||
| 总计 |
| P(K2≥0) | 0.10 | 0.05 | 0.025 | 0.010 |
| K0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)的图象向右平移$\frac{π}{4}$个单位长度后得到$g(x)=\sqrt{2}sin(2x+\frac{π}{4})$的图象 | |
| B. | 若f(x1)=f(x2),则x1-x2=kπ,k∈Z | |
| C. | f(x)的图象关于直线$x=\frac{5}{8}π$对称 | |
| D. | f(x)的图象关于点$(-\frac{3}{8}π,0)$对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 既是等差数列又是等比数列 | B. | 既不是等差数列也不是等比数列 | ||
| C. | 是等差数列但不是等比数列 | D. | 是等比数列但不是等差数列 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com