精英家教网 > 高中数学 > 题目详情
20.根据下列条件求直线方程.
(1)已知直线过点P(-2,2)且与两坐标轴所围成的三角形的面积为1;
(2)已知直线过两直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0.

分析 (1)引入两个截距,用截距式写出方程,代入点(-2,2)得到一个关于两个截距的方程,再用截距表示出与坐标轴所围成的三角形的面积,令其为1,得到另一个关于截距的方程,解这两个方程组成方程组,求出截距,写出方程即可.
(2)联立已知的两直线方程得到方程组,求出两直线的交点坐标,所求的直线过交点坐标,然后由两直线垂直时斜率的乘积等于-1,根据直线x+3y+4=0的斜率即可得到所求直线的斜率,利用点斜式求直线的方程即可.

解答 解:(1)设所求直线方程为$\frac{x}{a}$+$\frac{y}{b}$=1,由已知可得$\left\{\begin{array}{l}{\frac{-2}{a}+\frac{2}{b}=1}\\{\frac{1}{2}|a|•|b|=1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=-1}\\{b=-2}\end{array}\right.$或$\left\{\begin{array}{l}{a=2}\\{b=1}\end{array}\right.$,
属于该直线方程为:2x+y+2=0或x+2y-2=0;
(2)联立直线方程 $\left\{\begin{array}{l}{3x-2y+1=0①}\\{x+3y+4=0②}\end{array}\right.$,
①+②×(-3)得:y=-1,把y=-1代入②,解得x=-1,
原方程组的解为:$\left\{\begin{array}{l}{x=-1}\\{y=-1}\end{array}\right.$,
所以两直线的交点坐标为(-1,-1),
又因为直线x+3y+4=0的斜率为-$\frac{1}{3}$,所以所求直线的斜率为3,
则所求直线的方程为:y+1=3(x+1),即3x-y+2=0.

点评 考查用待定系数法求直线方程,本题先引入参数,表示出直线的方程,再根据题设的条件建立起参数的方程求参数,这是求直线方程时常用的一个思路.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若实数x,y满足约束条件$\left\{\begin{array}{l}{x+2y-4≥0}\\{x-y+3≥0}\\{2x+y-3≤0}\end{array}\right.$,则$\frac{y}{x-3}$的最小值为(  )
A.$\frac{1}{3}$B.-$\frac{1}{2}$C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a、b 是实数,则“a>b”是“a2>b2”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.非充分非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若一个几何体的三视图如图所示,则这个几何体的外接球的表面积为(  )
A.34πB.$\frac{80π}{3}$C.$\frac{91}{3}π$D.114π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设当x=θ时,函数f(x)=3sinx+4cosx取得最小值,则sinθ=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$-\frac{3}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四面体ABCD中,O、E分别是BD、BC的中点,底面BCD是正三角形,AC=BD=2,AB=AD=$\sqrt{2}$.
(1)求异面直线AB与CD所成角的余弦值;
(2)求点E到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若不等式组$\left\{\begin{array}{l}{x^2}-x-2>0\\ 2{x^2}+(2k+7)x+7k<0\end{array}\right.$的整数解只有-3和-2,则k的取值范围是[-3,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设定点A(0,1),常数m>2,动点M(x,y),设$\overrightarrow p=({x+m,y})$,$\overrightarrow q=({x-m,y})$,且$|{\overrightarrow p}|-|{\overrightarrow q}|=4$.
(1)求动点M的轨迹方程;
(2)设直线L:$y=\frac{1}{2}x-3$与点M的轨迹交于B,C两点,问是否存在实数m使得$\overrightarrow{AB}•\overrightarrow{AC}=\frac{9}{2}$?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦点为F(c,0).
(1)若双曲线的一条渐近线方程为y=x且c=2,求双曲线的方程;
(2)经过原点且倾斜角为30°的直线l与双曲线右支交于点A,且△OAF是以AF为底边的等腰三角形,求双曲线的离心率e的值.

查看答案和解析>>

同步练习册答案