精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=ax3+$\frac{1}{2}$x2在x=-1处取得极大值,记g(x)=$\frac{1}{f′(x)}$.程序框图如图所示,若输出的结果S>$\frac{2014}{2015}$,则判断框中可以填入的关于n的判断条件是(  )
A.n≤2014?B.n≤2015?C.n>2014?D.n>2015?

分析 根据已知中的程序框图可得,该程序的功能是计算并输出变量S的值,模拟程序的运行过程,可得答案.

解答 解:函数f(x)=ax3+$\frac{1}{2}$x2,在x=-1处取得极大值,
即f′(x)=3ax2+x的零点为-1,
即 3a-a=0,解得:a=$\frac{1}{3}$,
故f′(x)=x2+x,
故g(x)=$\frac{1}{f′(x)}$=$\frac{1}{x}$-$\frac{1}{x+1}$,
则S=g(1)+g(2)+g(3)+…+g(k)=1-$\frac{1}{k+1}$=$\frac{k}{k+1}$,
若输出的结果S>$\frac{2014}{2015}$,则k>2015,
故进行循环的条件应为n≤2015?,
故选:B.

点评 本题以程序框图为载体,考查了函数在某点取得极值的条件,数列求和,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知tanα=-3,且α是第二象限的角.
(1)求cosα的值;
(2)求$\frac{4sinα-2cosα}{5cosα+3sinα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设复数z满足i•(z-4)=3+2i(i是虚数单位),则z的实部为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线x+2y-1=0在y轴上的截距为(  )
A.-1B.$\frac{1}{2}$C.$-\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=acos2x+(a-1)(cosx+1)其中a>0,记f(x)||的最大值为A.
(Ⅰ)当0<a<$\frac{1}{5}$时,讨论f(x)的单调性;
(Ⅱ)求A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=3x-2mx2-3ln(x+1),其中m∈R
(1)若x=1是f(x)的极值点,求m的值;
(2)若0<m<$\frac{3}{4}$,求f(x)的单调区间;
(3)若f(x)在[0,+∞)上的最小值是0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设x∈R,记不超过x的最大整数为[x],如[0.9]=0,[2.6]=2,令{x}=x-[x].则{$\frac{\sqrt{5}+1}{2}$},[$\frac{\sqrt{5}+1}{2}$],$\frac{\sqrt{5}+1}{2}$(  )
A.既是等差数列又是等比数列B.既不是等差数列也不是等比数列
C.是等差数列但不是等比数列D.是等比数列但不是等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知二次函数f(x)=ax2+x(a≠0).
(1)当a<0时,若函数$y=\sqrt{f(x)}$定义域与值域完全相同,求a的值;
(2)当a>0时,求函数g(x)=f(x)-2x-|x-a|的最小值h(a).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列每组函数是同一函数的是(  )
A.f(x)=x0与f(x)=1B.f(x)=$\sqrt{{x}^{2}}$-1与f(x)=|x|-1
C.f(x)=$\frac{{x}^{2}-4}{x+2}$与f(x)=x-2D.f(x)=$\sqrt{(x-1)(x-2)}$与f(x)=$\sqrt{x-1}$$\sqrt{x-2}$

查看答案和解析>>

同步练习册答案