精英家教网 > 高中数学 > 题目详情
已知椭圆的右顶点为,过的焦点且垂直长轴的弦长为1.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点在抛物线上,在点处的切线与交于点.线段的中点与的中点的横坐标相等时,求的最小值.

的最小值为1.

(I) 由题意得所求的椭圆方程为,高&考%资(源#网   
(II)不妨设则抛物线在点P处的切线斜率为,直线MN的方程为,将上式代入椭圆的方程中,得,即,因为直线MN与椭圆有两个不同的交点,
所以有
设线段MN的中点的横坐标是,则,高&考%资(源#网   
设线段PA的中点的横坐标是,则,由题意得,即有,其中的
时有
因此不等式不成立;因此
时代入方程,将代入不等式成立,因此的最小值为1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设椭圆,抛物线.
(1) 若经过的两个焦点,求的离心率;
(2) 设,又不在轴上的两个交点,若的垂心为,且的重心在上,求椭圆和抛物线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆:上一点及其焦点满足

⑴求椭圆的标准方程。
⑵如图,过焦点F2作两条互相垂直的弦AB,CD,设弦AB,CD的中点分别为M,N。
①线段MN是否恒过一个定点?如果经过定点,试求出它的坐标,如果不经过定点,试说明理由;
②求分别以AB,CD为直径的两圆公共弦中点的轨迹方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆与曲线无交点,则椭圆的离心率的取值范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知椭圆过点,长轴长为,过点C(-1,0)且斜率为k的直线l与椭圆相交于不同的两点A、B.
(1)求椭圆的方程;
(2)若线段AB中点的横坐标是求直线l的斜率;
(3)在x轴上是否存在点M,使是与k无关的常数?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(理)已知实数满足,则的取值范围是   ▲  
(文)已知函数,在同一周期内,当时,取得最大值2;当 时,取得最小值,那么该函数的解析式是   ▲  

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点F1F2分别是椭圆的左、右焦点,过F1且垂直于x轴的直线与椭圆交于AB两点,若△ABF2为正三角形,则该椭圆的离心率是_____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆是椭圆上关于原点对称的两点,是椭圆上任意一点,且直线的斜率分别为,若,则椭圆的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆的一条准线经过抛物线的焦点,则该椭圆的离心率为                                                              (   )
A.B.C.D.

查看答案和解析>>

同步练习册答案