【题目】已知正项数列{an}的前n项和为Sn , 数列{an}满足,2Sn=an(an+1).
(1)求数列{an}的通项公式;
(2)设数列{ }的前n项和为An , 求证:对任意正整数n,都有An< 成立;
(3)数列{bn}满足bn=( )nan , 它的前n项和为Tn , 若存在正整数n,使得不等式(﹣2)n﹣1λ<Tn+ ﹣2n﹣1成立,求实数λ的取值范围.
【答案】
(1)解: ,当n≥2时, ,
两式相减得: ,所以(an+an﹣1)(an﹣an﹣1﹣1)=0.
因为数列{an}为正项数列,故an+an﹣1≠0,也即an﹣an﹣1=1,
所以数列{an}为以1为首项1为公差的等差数列,故通项公式为an=n,n∈N*
(2)解: = ,
所以对任意正整数n,都有 成立
(3)解:易知 ,则 ,①,
,②
①﹣②可得: .
故 ,所以不等式 成立,
若n为偶数,则 ,所以 .
设 ,则y=﹣2t+t2+1=(t﹣1)2在 单调递减,
故当 时, ,所以 ;
若n为奇数,则 ,所以 .
设 ,则y=2t﹣t2﹣1=﹣(t﹣1)2在(0,1]单调递增,
故当t=1时,ymax=0,所以λ<0.
综上所述,λ的取值范围λ<0或
【解析】(1)根据数列的递推公式即可求出数列{an}的通项公式,(2) = < = ﹣ ,利用放缩法即可证明,(3)先利用错位相减法求出数列{bn}的前n项和为Tn , 不等式(﹣2)n﹣1λ<Tn+ ﹣2n﹣1成立,转化为 成立,分n为偶数和奇数,根据函数的性质即可求出实数λ的取值范围
【考点精析】掌握数列的前n项和和数列的通项公式是解答本题的根本,需要知道数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
科目:高中数学 来源: 题型:
【题目】已知定义在R的奇函数满足,且时, ,下面四种说法①;②函数在[-6,-2]上是增函数;③函数关于直线对称;④若,则关于的方程在[-8,8]上所有根之和为-8,其中正确的序号__________。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点, 轴正半轴为极轴建立极坐标系,
已知某圆的极坐标方程为: .
(1)将极坐标方程化为直角坐标方程;
(2)若点 在该圆上,求的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知点,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,点的极坐标为,直线的极坐标方程为,且过点;过点与直线平行的直线为, 与曲线相交于两点.
(1)求曲线上的点到直线距离的最小值;
(2)求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在中, 的中点为,且,点在的延长线上,且.固定边,在平面内移动顶点,使得圆与边,边的延长线相切,并始终与的延长线相切于点,记顶点的轨迹为曲线.以所在直线为轴, 为坐标原点如图所示建立平面直角坐标系.
(Ⅰ)求曲线的方程;
(Ⅱ)设动直线交曲线于两点,且以为直径的圆经过点,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线: ,曲线: (为参数),以坐标原点为极点, 轴正半轴为极轴,建立极坐标系.
(Ⅰ)求曲线, 的极坐标方程;
(Ⅱ)曲线: (为参数, , )分别交, 于, 两点,当取何值时, 取得最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com