精英家教网 > 高中数学 > 题目详情

【题目】已知正项数列{an}的前n项和为Sn , 数列{an}满足,2Sn=an(an+1).
(1)求数列{an}的通项公式;
(2)设数列{ }的前n项和为An , 求证:对任意正整数n,都有An 成立;
(3)数列{bn}满足bn=( nan , 它的前n项和为Tn , 若存在正整数n,使得不等式(﹣2)n1λ<Tn+ ﹣2n1成立,求实数λ的取值范围.

【答案】
(1)解: ,当n≥2时,

两式相减得: ,所以(an+an1)(an﹣an1﹣1)=0.

因为数列{an}为正项数列,故an+an1≠0,也即an﹣an1=1,

所以数列{an}为以1为首项1为公差的等差数列,故通项公式为an=n,n∈N*


(2)解: =

所以对任意正整数n,都有 成立


(3)解:易知 ,则 ,①,

,②

①﹣②可得:

,所以不等式 成立,

若n为偶数,则 ,所以

,则y=﹣2t+t2+1=(t﹣1)2 单调递减,

故当 时, ,所以

若n为奇数,则 ,所以

,则y=2t﹣t2﹣1=﹣(t﹣1)2在(0,1]单调递增,

故当t=1时,ymax=0,所以λ<0.

综上所述,λ的取值范围λ<0或


【解析】(1)根据数列的递推公式即可求出数列{an}的通项公式,(2) = = ,利用放缩法即可证明,(3)先利用错位相减法求出数列{bn}的前n项和为Tn , 不等式(﹣2)n1λ<Tn+ ﹣2n1成立,转化为 成立,分n为偶数和奇数,根据函数的性质即可求出实数λ的取值范围
【考点精析】掌握数列的前n项和和数列的通项公式是解答本题的根本,需要知道数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在R的奇函数满足,且时, ,下面四种说法①;②函数在[-6,-2]上是增函数;③函数关于直线对称;④若,则关于的方程在[-8,8]上所有根之和为-8,其中正确的序号__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在抛物线 的准线上,记的焦点为,过点且与轴垂直的直线与抛物线交于 两点,则线段的长为( )

A. 4 B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是边长为2的正方形, ,且 中点.

(Ⅰ)求证: 平面;  

求二面角的平面角的余弦.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知在锐角△ABC中,角A,B,C所对的边分别为a,b,c,且tanC= . (Ⅰ)求角C大小;
(Ⅱ)当c=1时,求ab的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点, 轴正半轴为极轴建立极坐标系,

已知某圆的极坐标方程为:

(1)将极坐标方程化为直角坐标方程;

(2)若点 在该圆上,求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知点,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,点的极坐标为,直线的极坐标方程为,且过点;过点与直线平行的直线为 与曲线相交于两点.

(1)求曲线上的点到直线距离的最小值;

(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在中, 的中点为,且,点的延长线上,且.固定边,在平面内移动顶点,使得圆与边,边的延长线相切,并始终与的延长线相切于点,记顶点的轨迹为曲线.以所在直线为轴, 为坐标原点如图所示建立平面直角坐标系.

(Ⅰ)求曲线的方程;

(Ⅱ)设动直线交曲线两点,且以为直径的圆经过点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线 ,曲线 为参数),以坐标原点为极点, 轴正半轴为极轴,建立极坐标系.

(Ⅰ)求曲线 的极坐标方程;

(Ⅱ)曲线 为参数, )分别交 两点,当取何值时, 取得最大值.

查看答案和解析>>

同步练习册答案