【题目】如图所示,在中, 的中点为,且,点在的延长线上,且.固定边,在平面内移动顶点,使得圆与边,边的延长线相切,并始终与的延长线相切于点,记顶点的轨迹为曲线.以所在直线为轴, 为坐标原点如图所示建立平面直角坐标系.
(Ⅰ)求曲线的方程;
(Ⅱ)设动直线交曲线于两点,且以为直径的圆经过点,求面积的取值范围.
【答案】(Ⅰ);(Ⅱ).
【解析】【试题分析】(1)依据题设条件运用椭圆的定义进行分析探求;(2)借助题设条件运用直线与椭圆的位置关系进行分析求解:
(Ⅰ)依题意得,设动圆与边的延长线相切于,与边相切于, 则
所以
所以点轨迹是以为焦点,长轴长为4的椭圆,且挖去长轴的两个顶点.则曲线的方程为.
由于曲线要挖去长轴两个顶点,所以直线斜率存在且不为,所以可设直线
由得,,同理可得: ,;
所以,
又,所以令,
则且,所以
又,所以,
所以,
所以,所以,
所以面积的取值范围为.
【法二】
依题意得直线斜率不为0,且直线不过椭圆的顶点,则可设直线: ,且。
设,又以为直径的圆经过点,则,所以
由得,则
且,所以
又
代入①得: ,所以,
代入②得: 恒成立所以且.
又;
点到直线的距离为,
所以
(Ⅰ)当时, ;
(Ⅱ)当且时,
,
又,当且仅当时取“”,所以,
所以,所以,
所以,所以;
综合(1),(2)知.
科目:高中数学 来源: 题型:
【题目】如图所示,正四棱锥P﹣ABCD中,侧棱PA与底面ABCD所成的角的正切值为.
(1)求侧面PAD与底面ABCD所成的二面角的大小;
(2)若E是PB的中点,求异面直线PD与AE所成角的正切值;
(3)问在棱AD上是否存在一点F,使EF⊥侧面PBC,若存在,试确定点F的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列{an}的前n项和为Sn , 数列{an}满足,2Sn=an(an+1).
(1)求数列{an}的通项公式;
(2)设数列{ }的前n项和为An , 求证:对任意正整数n,都有An< 成立;
(3)数列{bn}满足bn=( )nan , 它的前n项和为Tn , 若存在正整数n,使得不等式(﹣2)n﹣1λ<Tn+ ﹣2n﹣1成立,求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在坐标原点,焦点在轴上,左顶点为,左焦点为,点在椭圆上,直线与椭圆交于, 两点,直线, 分别与轴交于点, .
(Ⅰ)求椭圆的方程;
(Ⅱ)以为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,多面体中,四边形是菱形, , 相交于, ,点在平面上的射影恰好是线段的中点.
(Ⅰ)求证: 平面;
(Ⅱ)若直线与平面所成的角为,求平面与平面所成角(锐角)的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)的定义域为D,满足:①f(x)在D内是单调函数;②存在[ ]D,使得f(x)在[ ]上的值域为[a,b],那么就称函数y=f(x)为“优美函数”,若函数f(x)=logc(cx﹣t)(c>0,c≠1)是“优美函数”,则t的取值范围为( )
A.(0,1)
B.(0, )
C.(﹣∞, )
D.(0, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(1,2), =(cosα,sinα),设 = ﹣t (t为实数).
(1)t=1 时,若 ∥ ,求2cos2α﹣sin2α的值;
(2)若α= ,求| |的最小值,并求出此时向量 在 方向上的投影.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com