【题目】如图所示,在
中,
的中点为
,且
,点
在
的延长线上,且
.固定边
,在平面内移动顶点
,使得圆
与边
,边
的延长线相切,并始终与
的延长线相切于点
,记顶点
的轨迹为曲线
.以
所在直线为
轴,
为坐标原点如图所示建立平面直角坐标系.
![]()
(Ⅰ)求曲线
的方程;
(Ⅱ)设动直线
交曲线
于
两点,且以
为直径的圆经过点
,求
面积的取值范围.
【答案】(Ⅰ)
;(Ⅱ)
.
【解析】【试题分析】(1)依据题设条件运用椭圆的定义进行分析探求;(2)借助题设条件运用直线与椭圆的位置关系进行分析求解:
(Ⅰ)依题意得
,设动圆
与边
的延长线相切于
,与边
相切于
, 则![]()
![]()
所以![]()
所以点
轨迹
是以
为焦点,长轴长为4的椭圆,且挖去长轴的两个顶点.则曲线
的方程为
.
![]()
由于曲线
要挖去长轴两个顶点,所以直线
斜率存在且不为
,所以可设直线![]()
由
得
,
,同理可得:
,
;
所以
, ![]()
又
,所以
令
,
则
且
,所以 ![]()
又
,所以
,
所以
,
所以
,所以
,
所以
面积的取值范围为
.
【法二】
依题意得直线
斜率不为0,且直线
不过椭圆的顶点,则可设直线
:
,且
。
设
,又以
为直径的圆经过点
,则
,所以
由
得
,则![]()
且
,所以![]()
又![]()
代入①得:
,所以
,
代入②得:
恒成立所以
且
.
又
;
点
到直线
的距离为
,
所以
![]()
(Ⅰ)当
时,
;
(Ⅱ)当
且
时,
,
又
,当且仅当
时取“
”,所以
,
所以
,所以
,
所以
,所以
;
综合(1),(2)知
.
科目:高中数学 来源: 题型:
【题目】如图所示,正四棱锥P﹣ABCD中,侧棱PA与底面ABCD所成的角的正切值为
.
![]()
(1)求侧面PAD与底面ABCD所成的二面角的大小;
(2)若E是PB的中点,求异面直线PD与AE所成角的正切值;
(3)问在棱AD上是否存在一点F,使EF⊥侧面PBC,若存在,试确定点F的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列{an}的前n项和为Sn , 数列{an}满足,2Sn=an(an+1).
(1)求数列{an}的通项公式;
(2)设数列{
}的前n项和为An , 求证:对任意正整数n,都有An<
成立;
(3)数列{bn}满足bn=(
)nan , 它的前n项和为Tn , 若存在正整数n,使得不等式(﹣2)n﹣1λ<Tn+
﹣2n﹣1成立,求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心在坐标原点,焦点在
轴上,左顶点为
,左焦点为
,点
在椭圆
上,直线
与椭圆
交于
,
两点,直线
,
分别与
轴交于点
,
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)以
为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,多面体
中,四边形
是菱形,
,
相交于
,
,点
在平面
上的射影恰好是线段
的中点.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)若直线
与平面
所成的角为
,求平面
与平面
所成角(锐角)的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)的定义域为D,满足:①f(x)在D内是单调函数;②存在[
]D,使得f(x)在[
]上的值域为[a,b],那么就称函数y=f(x)为“优美函数”,若函数f(x)=logc(cx﹣t)(c>0,c≠1)是“优美函数”,则t的取值范围为( )
A.(0,1)
B.(0,
)
C.(﹣∞,
)
D.(0,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
=(1,2),
=(cosα,sinα),设
=
﹣t
(t为实数).
(1)t=1 时,若
∥
,求2cos2α﹣sin2α的值;
(2)若α=
,求|
|的最小值,并求出此时向量
在
方向上的投影.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com