精英家教网 > 高中数学 > 题目详情
已知函数有且仅有两个不同的零点,则(  )
A.当时,
B.当时,
C.当时,
D.当时,
B

试题分析:函数求导,得:,得两个极值点:因为函数f(x)过定点(0,-2),有且仅有两个不同的零点,所以,可画出函数图象如下图:因此,可知,,只有B符合.
.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x-ax+(a-1)
(1)讨论函数的单调性;(2)若,设
(ⅰ)求证g(x)为单调递增函数;
(ⅱ)求证对任意x,x,xx,有

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,函数 
(1)当时,求曲线处的切线方程;
(2)当时,求函数的单调区间;
(3)当时,求函数的最小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数(其中).
(1) 当时,求函数的单调区间和极值;
(2) 当时,函数上有且只有一个零点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处取得极值.
(1)求实数的值;
(2)若关于的方程上恰有两个不相等的实数根,求实数的取值范围;
(3)若,使成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)若是增函数,求b的取值范围;
(Ⅱ)若时取得极值,且时,恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数是自然对数的底数).
(1)若曲线处的切线也是抛物线的切线,求的值;
(2)当时,是否存在,使曲线在点处的切线斜率与 在
上的最小值相等?若存在,求符合条件的的个数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是实数,函数,分别是的导函数,若在区间上恒成立,则称在区间上单调性一致.
(Ⅰ)设,若函数在区间上单调性一致,求实数的取值范围;
(Ⅱ)设,若函数在以为端点的开区间上单调性一致,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(I)证明当 
(II)若不等式取值范围.

查看答案和解析>>

同步练习册答案