精英家教网 > 高中数学 > 题目详情
10.方程$\frac{sin2x}{cosx}$=$\frac{cos2x}{sinx}$的解集是{x|x=$\frac{kπ}{3}$+$\frac{π}{6}$,k∈Z,$\frac{k}{3}$余数不等于1}.

分析 由三角函数中的恒等变换应用化简已知可得cos3x=0,由余弦函数的图象和性质即可得解.

解答 解:∵$\frac{sin2x}{cosx}$=$\frac{cos2x}{sinx}$,
∴sin2xsinx=cos2xcosx,
∴cos2xcosx-sin2xsinx=0,
即 cos(2x+x)=0,
即 cos3x=0,
∴3x=kπ+$\frac{π}{2}$,k∈Z,
即 x=$\frac{kπ}{3}$+$\frac{π}{6}$,k∈Z,
∵sinx和cosx都不等于0,
∴x不等于$\frac{kπ}{2}$,
∵k=1,x=$\frac{π}{2}$,
k=4,x=$\frac{3π}{2}$,
…都不符合题意,
∴x=$\frac{kπ}{3}$+$\frac{π}{6}$,$\frac{k}{3}$余数不等于1,
∴方程的解集是{x|x=$\frac{kπ}{3}$+$\frac{π}{6}$,k∈Z,$\frac{k}{3}$余数不等于1}.
故答案为:{x|x=$\frac{kπ}{3}$+$\frac{π}{6}$,k∈Z,$\frac{k}{3}$余数不等于1}.

点评 本题主要考查了三角函数中的恒等变换应用,余弦函数的图象和性质,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.计算:tan10°tan20°+tan10°tan60°+tan60°tan20°=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.试求函数f(x)=sin(2x-$\frac{π}{2}$)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求y=$\frac{{x}^{2}-x+2}{{x}^{2}-x+1}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.解方程:($\frac{3}{q}$)2+(3)2+(3q)2=91.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求函数y=x-1+$\sqrt{2x+1}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$\frac{1}{a}$+$\frac{1}{2b}$+$\frac{1}{3c}$=1,求证:a+2b+3c≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.求证:一个三角形中,至少有一个内角不小于60°,用反证法证明时的假设为“三角形的(  )”.
A.三个内角不都小于60°B.三个内角都小于或等于60°
C.三个内角都大于60°D.三个内角都小于60°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数);以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,已知点A的极坐标为(4$\sqrt{2}$,$\frac{π}{4}$),直线l的极坐标方程为ρcos(θ-$\frac{π}{4}$)=a,且直线l过点A
(1)求曲线C1上的点到直线l的距离的最大值与最小值;
(2)若过点B(-2,2)与直线l平行的直线l1与曲线C1交于M,N两点,求|BM|•|BN|的值.

查看答案和解析>>

同步练习册答案