精英家教网 > 高中数学 > 题目详情
2.若椭圆经过原点,且焦点为F1(-1,0)、F2(-3,0),则其离心率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

分析 通过椭圆定义直接计算即可.

解答 解:由题可知:长轴长2a=[0-(-1)]+[0-(-3)]=4,∴a=2,
焦距2c=-1-(-3)=2,即c=1,
∴e=$\frac{c}{a}$=$\frac{1}{2}$,
故选:B.

点评 本题考查求椭圆的离心率,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinA-sinB=$\frac{1}{3}$sinC,3b=2a,2≤a2+ac≤18,设△ABC的面积为S,p=$\sqrt{2}$a-S,则p的最小值是(  )
A.$\frac{5\sqrt{2}}{9}$B.$\frac{7\sqrt{2}}{9}$C.$\sqrt{2}$D.$\frac{9\sqrt{2}}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2-kx+1,若存在α∈(0,$\frac{π}{2}$),使f(sinα)=f(cosα)
(1)当k=$\frac{1}{5}$时,求tanα的值
(2)在(1)的成立的基础上,求$\frac{{2{{sin}^2}α-2sinα•cosα}}{1+tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.曲线$\frac{x^2}{25}+\frac{y^2}{5}$=1与曲线$\frac{x^2}{n}+\frac{y^2}{5n}$=1(n>0)有相同的(  )
A.焦点B.焦距C.离心率D.准线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图所示,已知椭圆C:$\frac{x^2}{4}$+y2=1左、右端点分别为A1,A2,过定点(1,0)的动直线与椭圆C交于P,Q两点.直线A1P与A2Q交于点S.
(1)当直线斜率为1时,求直线A1P与A2Q的方程.
(2)试问:点S是否恒在一条定直线上.若是求出这条直线方程,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.过椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1的左焦点F引直线交椭圆于A、B两点,若|AB|=7,则此直线的方程为$\sqrt{3}x$+2y+2$\sqrt{3}$=0或$\sqrt{3}x$-2y+2$\sqrt{3}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列有关命题的说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”
B.命题“若x=y,则sinx=siny”的逆命题为真命题
C.命题“?x0∈R,x${\;}_{0}^{2}$+x0+1=0”的否定是“?x∈R,x2+x+1<0”
D.命题“若am2<bm2,则a<b”的逆命题是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为2,它的一个焦点与抛物线y2=8x的焦点相同,那么双曲线的渐近线方程为$y=±\sqrt{3}x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知△ABC的三个内角满足sinA=sinBcosC,则△ABC的形状一定是直角三角形.

查看答案和解析>>

同步练习册答案