精英家教网 > 高中数学 > 题目详情
14.下列有关命题的说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”
B.命题“若x=y,则sinx=siny”的逆命题为真命题
C.命题“?x0∈R,x${\;}_{0}^{2}$+x0+1=0”的否定是“?x∈R,x2+x+1<0”
D.命题“若am2<bm2,则a<b”的逆命题是真命题

分析 写出原命题的否命题判断A;写出原命题的逆命题并判断真假判断B,D;直接写出特称命题的否定判断C.

解答 解:命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,故A正确,
命题“若x=y,则sinx=siny”的逆命题是“若sinx=siny”,则“x=y”是假命题,故B错误,
命题“?x0∈R,x${\;}_{0}^{2}$+x0+1=0”的否定是“?x∈R,x2+x+1≠0,故C错误,
命题“若am2<bm2,则a<b”的逆命题是:“若a<b”,则“am2<bm2”,是假命题,故D错误,
故选:A.

点评 本题考查了命题的真假判断与应用,考查了原命题的逆命题、否命题的真假性的判定方法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在如图所示四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是正方式,PA=AB=1,E是PD上的点,PB∥平面AEC,
(Ⅰ)确定点E的位置并证明AE⊥PC
(Ⅱ)求三棱锥P-AEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5..已知对k∈R,直线kx-y+1=0与椭圆$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{m}$=1恒有公共点,则实数m的取值范围是[1,5)∪(5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若椭圆经过原点,且焦点为F1(-1,0)、F2(-3,0),则其离心率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.定义在R上的连续函数f(x),如果存在非零常数λ(λ∈R),使得对任意x∈R,都有f(x+λ)=λf(x),则称f(x)为“倍增函数”,λ为“倍增系数”.给出下列结论:
①函数D(x)=$\left\{\begin{array}{l}{0,x为无理数}\\{1,x为有理数}\end{array}\right.$,是倍增函数;
②若0<a<1,则函数f(x)=ax是倍增函数;
③若函数y=f(x)是倍增系数λ=-1的倍增函数,则y=f(x)至少有1个零点.
其中正确的结论是②③.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点M($\sqrt{3}$,2)是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上的一点,MF2垂直于x轴,F1,F2分别为椭圆的左、右焦点,A1,A2分别为椭圆的左、右顶点
(1)求椭圆C的标准方程;
(2)动直线l:x=my+1与椭圆C交于P、Q两点,直线A1P与直线A2Q交于点S,当直线l变化时,点S是否在一条定直线上?若是,求出定直线方程;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数y=sin2x+$\sqrt{3}$cos2x的最小正周期为T,最大值为A,则(  )
A.T=2π,A=2B.T=2π,A=$\sqrt{2}$C.T=π,A=2D.T=π,A=$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a>0,b>0,若3是9a与27b的等比中项,则$\frac{3}{a}$+$\frac{2}{b}$的最小值为(  )
A.25B.24C.36D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知解集A={y|y=2n(n∈N*)},B={y|y=2n+1,n∈N*},则A∩B中有(  )个元素.
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案