精英家教网 > 高中数学 > 题目详情
已知2x=3y=a,且 
1
x
+
1
y
=2,则a的值为(  )
A、
6
B、6
C、±
6
D、36
考点:对数的运算性质
专题:函数的性质及应用
分析:利用对数的换底公式和运算法则即可得出.
解答: 解:∵2x=3y=a,∴xlg2=ylg3=lga,
1
x
=
lg2
lga
1
y
=
lg3
lga

∴2=
1
x
+
1
y
=
lg2
lga
+
lg3
lga
=
lg6
lga

∴lga=
1
2
lg6=lg
6

解得a=
6

故选:A.
点评:本题考查了对数的换底公式和运算法则,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合Pn={1,2,…,n},n∈N*,设集合A同时满足以下三个条件:①A⊆Pn;②若x∈A,则2x∉A;
③若x∈∁ PnA,则2x∉∁ pnA.当n=4时,写出一个满足条件的集合A
 
;当N=9时,满足条件的集合A的个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

以下命题:
①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为40.
②线性回归直线方程
y
=
b
x+
a
恒过样本中心(
.
x
.
y
),且至少过一个样本点;
③复数z=(a-2i)i(a∈R,i为虚数单位)在复平面内对应的点为M,则“a<0“是“点M在第四象限”的充要条件.
其中真命题的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集I={1,2,3,4,5,6},集合M={3,4,5},N={1,2,3,4},则如图中阴影部分表示的集合为(  )
A、{1,2}
B、{1,2,6}
C、{1,2,3,4,5}
D、{1,2,3,4,6}

查看答案和解析>>

科目:高中数学 来源: 题型:

若在区间[0,2]中随机地取两个数,则这两个数的和大于1的概率是(  )
A、
1
4
B、
3
4
C、
7
8
D、
1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

设i为虚数单位,复数z的共轭复数为
.
z
,且(
.
z
-1)(1+i)=2i,则复数z=(  )
A、2+iB、2-i
C、-2+iD、-2-i

查看答案和解析>>

科目:高中数学 来源: 题型:

若全集U={1,2,3,4,5,6},M={1,4},N={2,3},则集合{5,6}等于(  )
A、M∪N
B、M∩N
C、(∁UM)∪(∁UN)
D、(∁UM)∩(∁UN)

查看答案和解析>>

科目:高中数学 来源: 题型:

各项均为正数的数列{an}中,设Sn=a1+a2+…+an,Tn=
1
a1
+
1
a2
+…+
1
an
,且(2-Sn)(1+Tn)=2,n∈N*
(1)设bn=2-Sn,证明数列{bn}是等比数列;
(2)设cn=
1
2
nan,求集合{(m,k,r)|cm+cr=2ck,m<k<r,m,k,r∈N*}.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a3=7,a5+a7=26.
(1)求{an}的通项公式;
(2)若m=
2an
2n+2
,数列{bn}满足关系式bn=
1,  n=1
bn-1+m,n≥2
,求证:数列{bn}的通项公式为bn=2n-1;
(3)设(2)中的数列{bn}的前n项和为Sn,对任意的正整数n,(1-n)•(Sn+n+2)+(n+p)•2n+1<2恒成立,求实数p的取值范围.

查看答案和解析>>

同步练习册答案