ÒÑÖªµÈ²îÊýÁÐ{an}Âú×ãa3=7£¬a5+a7=26£®
£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©Èôm=
2an
2n+2
£¬ÊýÁÐ{bn}Âú×ã¹ØÏµÊ½bn=
1£¬  n=1
bn-1+m£¬n¡Ý2
£¬ÇóÖ¤£ºÊýÁÐ{bn}µÄͨÏʽΪbn=2n-1£»
£¨3£©É裨2£©ÖеÄÊýÁÐ{bn}µÄǰnÏîºÍΪSn£¬¶ÔÈÎÒâµÄÕýÕûÊýn£¬£¨1-n£©•£¨Sn+n+2£©+£¨n+p£©•2n+1£¼2ºã³ÉÁ¢£¬ÇóʵÊýpµÄȡֵ·¶Î§£®
¿¼µã£ºÊýÁÐÓë²»µÈʽµÄ×ÛºÏ,µÈ²îÊýÁеÄÐÔÖÊ
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ,²»µÈʽµÄ½â·¨¼°Ó¦ÓÃ
·ÖÎö£º£¨1£©ÓɵȲîÊýÁÐÓÐͨÏʽ£¬µÃµ½Ê×ÏîÓ빫²îµÄ·½³Ì×飬µÃ³öÊ×ÏîÓ빫²îµÄÖµ£¬µÃµ½Í¨Ïʽ£»£¨2£©ÒÑÖªÊýÁеĵÝÍÆ¹«Ê½£¬Óɵþ¼Ó·¨£¬µÃµ½ÊýÁеÄͨÏʽ£»£¨3£©½«ÊýÁÐÇóºÍµÃµ½Ç°nÏîºÍºó£¬½«Ìõ¼þ±äÐκ󣬵õ½¹ØÓÚ²ÎÊýpµÄ¹ØÏµÊ½£¬ÕâÊÇÒ»¸öºã³ÉÁ¢ÎÊÌ⣬ͨ¹ý×îÖµµÄÑо¿£¬µÃµ½±¾Ìâ½áÂÛ£®
½â´ð£º ½â£º£¨1£©ÉèµÈ²îÊýÁÐanµÄ¹«²îΪd£¬
ÓÉÒÑÖª£¬ÓÐ
a1+2d=7
2a1+10d=26
½âµÃ
a1=3
d=2

ËùÒÔan=3+2£¨n-1£©=2n+1£¬
¼´²îÊýÁÐanµÄͨÏʽΪan=2n+1£¬n¡ÊN*£®
£¨2£©ÒòΪm=
2an
2n+2
=
22n+1
2n+2
=2n-1
£¬
ËùÒÔ£¬µ±n¡Ý2ʱ£¬bn=bn-1+2n-1£®
Ö¤·¨Ò»£¨Êýѧ¹éÄÉ·¨£©£º
¢Ùµ±n=1ʱ£¬b1=1£¬½áÂÛ³ÉÁ¢£»
¢Ú¼ÙÉèµ±n=kʱ½áÂÛ³ÉÁ¢£¬¼´bk=2k-1£¬
ÄÇôµ±n=k+1ʱ£¬bk+1=bk+2k=2k-1+2k=2k+1-1£¬
¼´n=k+1ʱ£¬½áÂÛÒ²³ÉÁ¢£® 
ÓÉ¢Ù£¬¢ÚµÃ£¬µ±n¡ÊN*ʱ£¬bn=2n-1³ÉÁ¢£®
Ö¤·¨¶þ£ºµ±n¡Ý2ʱ£¬bn-bn-1=2n-1£¬
ËùÒÔ
b2-b1=2
b3-b2=22
¡­
bn-bn-1=2n-1

½«Õân-1¸öʽ×ÓÏà¼Ó£¬µÃbn-b1=2+22+23+¡­+2n-1£¬
¼´bn=1+2+22+¡­+2n-1=
1-2n
1-2
=2n-1
£®
µ±n=1ʱ£¬b1=1Ò²Âú×ãÉÏʽ£®
ËùÒÔÊýÁÐ{bn}µÄͨÏʽΪbn=2n-1£®
£¨3£©ÓÉ£¨2£©bn=2n-1£¬ËùÒÔSn=(2+22+23+¡­+2n)-n=2n+1-(n+2)£¬
¡àÔ­²»µÈʽ±äΪ£¨1-n£©2n+1+£¨n+p£©•2n+1£¼2£¬¼´p•2n+1£¼2-2n+1£¬
¡àp£¼
1
2n
-1
¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¬
¡ßnΪÈÎÒâµÄÕýÕûÊý£¬
¡àp¡Ü-1£®
¡àmµÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬-1]£®
µãÆÀ£º±¾Ì⿼²éµÄÊÇÊýÁкͲ»µÈʽµÄ֪ʶ£¬Éæ¼°µ½µÈ²îÊýÁеÄͨÏʽ¡¢Ç°nÏîºÍ¹«Ê½¡¢µþ¼Ó·¨ÇóͨÏÒÔ¼°²»µÈ¹ØÏµÊ½£®±¾ÌâÓÐÒ»¶¨µÄ˼άÁ¿£¬ÔËËãÁ¿½Ï´ó£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª2x=3y=a£¬ÇÒ 
1
x
+
1
y
=2£¬ÔòaµÄֵΪ£¨¡¡¡¡£©
A¡¢
6
B¡¢6
C¡¢¡À
6
D¡¢36

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}Âú×ãa1=3£¬an+1-3an=3n£¨n¡ÊN*£©£¬ÊýÁÐ{bn}Âú×ãbn=
an
3n

£¨¢ñ£©ÇóÖ¤£ºÊýÁÐ{bn}ÊǵȲîÊýÁУ®
£¨¢ò£©ÉèSn=
a1
3
+
a2
4
+
a3
5
+¡­+
an
n+2
£¬ÇóÂú×ã²»µÈʽ
1
128
£¼
Sn
S2n
£¼
1
4
µÄËùÓÐÕýÕûÊýnµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=lnx-mx+m£¬m¡ÊR£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨¢ò£©Èôf£¨x£©¡Ü0ÔÚ£¨0£¬+¡Þ£©ÉϺã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨¢ó£©ÔÚ£¨¢ò£©µÄÌõ¼þÏ£¬Ö¤Ã÷£º¶ÔÈÎÒâµÄ0£¼a£¼b£¬
f(b)-f(a)
b-a
¡Ü
1
a
-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÅжϺ¯Êýf£¨x£©=ax2+1£¨a£¾0£©ÔÚ£¨0£¬+¡Þ£©Éϵĵ¥µ÷ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂ±í¸ø³öÁËijУ120Ãû12ËêÄк¢Éí¸ßµÄ×ÊÁÏ
Çø¼ä 122¡«126 126¡«130 130¡«134 134¡«138 138¡«142
ÈËÊý 5 8 10 22 33
Çø¼ä 142¡«146 146¡«150 150¡«154 154¡«158
ÈËÊý 20 11 6 5
£¨1£©»­³öÑù±¾µÄƵÂÊ·Ö²¼Ö±·½Í¼£®
£¨2£©¹À¼ÆÉí¸ßСÓÚ134µÄÈËÊýÔ¼Õ¼µÄ°Ù·ÖÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=4cos£¨¦Øx-
¦Ð
6
£©sin¦Øx-cos£¨2¦Øx+¦Ð£©£¨¦Ø£¾0£©£¬ÆäͼÏóÓëÖ±Ïßy=1µÄÏàÁÚÁ½¸ö½»µãµÄ¾àÀëΪ¦Ð£®
£¨1£©Èôg£¨x£©=f£¨
3
4
x+
¦Ð
4
£©£¬Çóg£¨x£©ÔÚ[0£¬¦Ð]Éϵĵ¥µ÷µÝÔöÇø¼ä£»
£¨2£©Èôf£¨¦Á£©+f£¨
¦Ð
2
-¦Á£©=
4+
21
2
£¬ÇÒ¦Á¡Ê£¨
¦Ð
4
£¬
¦Ð
2
£©£¬ÊÔÇó
(5sin2¦Á+11cos2¦Á-8)(tan¦Á+cot¦Á)
2
sin(¦Á+
¦Ð
4
)
µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÕÕijѧÕßµÄÀíÂÛ£¬¼ÙÉèÒ»¸öÈËÉú²úij²úÆ·µ¥¼þ³É±¾ÎªaÔª£¬Èç¹ûËûÂô³ö¸Ã²úÆ·µÄµ¥¼ÛΪ mÔª£¬ÔòËûµÄÂúÒâ¶ÈΪ
m
m+a
£»Èç¹ûËûÂò½ø¸Ã²úÆ·µÄµ¥¼ÛΪnÔª£¬ÔòËûµÄÂúÒâ¶ÈΪ
n
n+a
£®Èç¹ûÒ»¸öÈ˶ÔÁ½ÖÖ½»Ò×£¨Âô³ö»òÂò½ø£©µÄÂúÒâ¶È·Ö±ðΪh1ºÍh2£¬ÔòËû¶ÔÕâÁ½ÖÖ½»Ò×µÄ×ÛºÏÂúÒâ¶ÈΪ
h1h2
£®
 ÏÖ¼ÙÉè¼×Éú²úA¡¢BÁ½ÖÖ²úÆ·µÄµ¥¼þ³É±¾·Ö±ðΪ12ÔªºÍ5Ôª£¬ÒÒÉú²úA¡¢BÁ½ÖÖ²úÆ·µÄµ¥¼þ³É±¾·Ö±ðΪ3ÔªºÍ20Ôª£¬Éè²úÆ·A¡¢BµÄµ¥¼Û·Ö±ðΪmAÔªºÍmBÔª£¬¼×Âò½øAÓëÂô³öBµÄ×ÛºÏÂúÒâ¶ÈΪh¼×£¬ÒÒÂô³öAÓëÂò½øBµÄ×ÛºÏÂúÒâ¶ÈΪhÒÒ£®
£¨1£©Çóh¼×ºÍhÒÒ¹ØÓÚmA¡¢mBµÄ±í´ïʽ£»µ±mA=
3
5
mBʱ£¬ÇóÖ¤£ºh¼×=hÒÒ£»
£¨2£©ÉèmA=
3
5
mB£¬µ±mA¡¢mB·Ö±ðΪ¶àÉÙʱ£¬¼×¡¢ÒÒÁ½È˵Ä×ÛºÏÂúÒâ¶È¾ù×î´ó£¿×î´óµÄ×ÛºÏÂúÒâ¶ÈΪ¶àÉÙ£¿
£¨3£©¼Ç£¨2£©ÖÐ×î´óµÄ×ÛºÏÂúÒâ¶ÈΪh0£¬ÊÔÎÊÄÜ·ñÊʵ±Ñ¡È¡mA¡¢mBµÄÖµ£¬Ê¹µÃh¼×¡Ýh0ºÍhÒÒ¡Ýh0 ͬʱ³ÉÁ¢£¬µ«µÈºÅ²»Í¬Ê±³ÉÁ¢£¿ÊÔ˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èç¹ûÖ´ÐÐÈçͼµÄ³ÌÐò¿òͼ£¬ÄÇôÊä³öµÄÖµÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸