精英家教网 > 高中数学 > 题目详情
8.已知tan2.5°=a,则sin5°(1-$\frac{tan2.5°}{tan5°}$)=a.

分析 利用同角三角函数的基本关系,二倍角公式,求得要求式子的值.

解答 解:tan2.5°=a,则sin5°(1-$\frac{tan2.5°}{tan5°}$)
=sin5°-sin5°•$\frac{tan2.5°}{tan5°}$=sin5°-sin5°•$\frac{sin2.5°•cos5°}{cos2.5°•sin5°}$=2sin2.5°cos2.5°-$\frac{sin2.5°cos5°}{cos2.5°}$
=$\frac{2sin2.5°cos2.5°}{{sin}^{2}2.5°{+cos}^{2}2.5°}$-tan2.5°•$\frac{{cos}^{2}2.5°{-sin}^{2}2.5°}{{cos}^{2}2.5°{+sin}^{2}2.5°}$=$\frac{2tan2.5°}{{tan}^{2}2.5°+1}$-tan2.5°•$\frac{1{-tan}^{2}2.5°}{1{+tan}^{2}2.5°}$
=$\frac{2a}{{a}^{2}+1}$-a•$\frac{1{-a}^{2}}{1{+a}^{2}}$=a,
故答案为:a.

点评 本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若直线ax+by+6=0与圆x2+y2+4x-1=0切于点P(-1,2),则ab为(  )
A.8B.2C.-8D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.与直线x+2y-3=0垂直且过点P(2,3)的直线方程是(  )
A.2x-y-1=0B.2x-y+1=0C.x-2y-1=0D.x-2y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$tan({α+\frac{π}{4}})=2+\sqrt{3}$,则tanα的值是(  )
A.$\frac{{\sqrt{3}}}{3}$B.$-\sqrt{3}$C.1D.以上答案都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求函数f(x)=logsinx(cosx+$\frac{1}{2}$)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知(1+3x2n的展开式中,各项系数和比它的二项式系数和大992.求展开式中二项式系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某县一中计划把一块边长为20米的等边三角形ABC的边角地辟为植物新品种实验基地,图中DE需把基地分成面积相等的两部分,D在AB上,E在AC上.
(1)设AD=x(x≥10),ED=y,试用x表示y的函数关系式;
(2)如果DE是灌溉输水管道的位置,为了节约,则希望它最短,DE的位置应该在哪里?如果DE是参观线路,则希望它最长,DE的位置又应该在哪里?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设f(x)=sinxcosx+$\sqrt{3}$cos2x,则f(x)的单调递减区间是[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(Ⅰ)某科考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格.设甲、乙两个班所抽取的10名同学成绩方差分别为$S_甲^2$、$S_乙^2$,比较$S_甲^2$、$S_乙^2$的大小(直接写结果,不必写过程);
(Ⅱ)设集合$A=\{y|y={x^2}-2x+\frac{1}{2}\}$,B={x|m+x2≤1,m<1},命题p:x∈A;命题q:x∈B,若p是q的必要条件,求实数m的取值范围.

查看答案和解析>>

同步练习册答案