精英家教网 > 高中数学 > 题目详情

【题目】共享单车是指企业的校园,地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是一种分时租赁模式,某共享单车企业为更好服务社会,随机调查了100人,统计了这100人每日平均骑行共享单车的时间(单位:分钟),由统计数据得到如下频率分布直方图,已知骑行时间在三组对应的人数依次成等差数列

(1)求频率分布直方图中的值.

(2)若将日平均骑行时间不少于80分钟的用户定义为“忠实用户”,将日平均骑行时间少于40分钟的用户为“潜力用户”,现从上述“忠实用户”与“潜力用户”的人中按分层抽样选出5人,再从这5人中任取3人,求恰好1人为“忠实用户”的概率.

【答案】(1) ;(2) .

【解析】试题分析:(1)根据直方图各矩形面积和为可得,从而可得的值,在根据三组对应的人数依次成等差数列求出的值;(2)列举出这人中任选人共种情形,符合题设条件有共有种,根据古典概型概率公式可得恰好人为“忠实用户”的概率.

试题解析:(1)由

,所以.

(2)“忠实用户”“潜力用户”的人数之比为:

所以“忠实用户”抽取人,“潜力用户”抽取人,

记事件:从人中任取人恰有人为“忠实用户”

设两名“忠实用户”的人记为: ,三名“潜力用户”的人记为:

则这5人中任选3人有: ,共10种情形,

符合题设条件有: 共有6种,因此概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线M的参数方程为 (θ为参数),若以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线N的极坐标方程为ρsin(θ+)=t(其中t为常数).

(Ⅰ)若曲线N与曲线M只有一个公共点,求t的值;

(Ⅱ)当t=-1时,求曲线M上的点与曲线N上的点的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856266)[选修4-5:不等式选讲]

设函数f(x)=|2x-1|-|x+2|.

(Ⅰ)解不等式f(x)>0;

(Ⅱ)若x0∈R,使得f+2m2<4m,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)在区间上的极小值等于,求a的值;

(2)令,设是函数的两个极值点,若,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856290)[选修4-5:不等式选讲]

已知函数f(x)=|xa|+|x-2a|.

(Ⅰ)对任意x∈R,不等式f(x)>1成立,求实数a的取值范围;

(Ⅱ)当a=-1时,解不等式f(x)<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+2(m为实常数).

(1)若函数f(x)图象上动点P到定点Q(0,2)的距离的最小值为,求实数m的值;

(2)若函数yf(x)在区间[2,+∞)上是增函数,试用函数单调性的定义求实数m的取值范围;

(3)设m<0,若不等式f(x)≤kxx∈[,1]时有解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是矩形平面.

(1)证明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn,已知(a4-1)3+2 016(a4-1)=1,(a2 013-1)3+2 016·(a2 013-1)=-1,则下列结论正确的是(  )

A. S2 016=-2 016,a2 013>a4

B. S2 016=2 016,a2 013>a4

C. S2 016=-2 016,a2 013<a4

D. S2 016=2 016,a2 013<a4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知px0(1,1)xx0m0(mR)”是正确的,设实数m的取值集合为M.

(1)求集合M

(2)设关于x的不等式(xa)(xa2)<0(aR)的解集为N,若xMxN的充分条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案