精英家教网 > 高中数学 > 题目详情

【题目】已知点是函数 (),)的图象上一点,等比数列的前项和为,数列 ()的首项为,且前项和满足: ().

(1).求数列的通项公式;

(2).若数列的通项求数列的前项和;

(3).若数列项和为,试问的最小正整数是多少.

【答案】( 1) (2)(3)112

【解析】

(1)先求a,再根据等比中项求c,根据等比数列通项公式求的通项公式,根据条件得为等差数列,解得,再根据和项与通项关系求的通项公式;(2)根据错位相减法求数列的前项和;(3)根据裂项相消法求数列项和为,解不等式得最小正整数.

(1).因为所以,

,,.

又数列成等比数列, ,所以.

于是公比,所以 .

因为 ,

,,所以

故数列是首项为,公差为的等差数列,于是,所以.

于是当, ; (*)

又因为也满足(*),所以 .

(2).,,

,

,

由①-②得 ,

化简得 ,

.

(3).

,

故满足的最小正整数为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是(  )

A. 恰有1件一等品 B. 至少有一件一等品

C. 至多有一件一等品 D. 都不是一等品

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}的各项均为正数,且2a1+3a2=1, =9a2a6.

(1)求数列{an}的通项公式;

(2)设bn=log3a1+log3a2+…+log3an,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面是李强同学数学作业本上的一道题,请你帮他完成下面的题目.

(题目)求函数f(x)=,xR,x=0,1,2处的函数值和值域

(解答)()计算f(0)、f(1)、f(2).

()总结:容易看出,这个函数当x=0时,有最大值__________,当自变量x的绝对值逐渐__________(选填变大变小)时,函数值逐渐变小并趋向于0,但__________(选填永远不会可能会)等于0,于是可知该函数的值域为集合:

{y|y=f(x),__________}=____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,曲线C1的极坐标方程为ρ=2sinθ,正方形ABCD的顶点都在C1上,且依次按逆时针方向排列,点A的极坐标为( ).
(1)求点C的直角坐标;
(2)若点P在曲线C2:x2+y2=4上运动,求|PB|2+|PC|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-1:几何证明选讲]
如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心, OA为半径作圆.

(1)证明:直线A与⊙O相切;
(2)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的可导函数f(x),其导函数记为f'(x),满足f(x)+f(2﹣x)=(x﹣1)2 , 且当x≤1时,恒有f'(x)+2<x.若 ,则实数m的取值范围是(
A.(﹣∞,1]
B.
C.[1,+∞)
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直四棱柱ABCD﹣A1B1C1D1内接于半径为 的半球O,四边形ABCD为正方形,则该四棱柱的体积最大时,AB的长是(

A.1
B.
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=ax2+bx+ca≠0),满足f(0)=2,fx+1)﹣fx)=2x﹣1

(1)求函数fx)的解析式;

(2)当x∈[﹣1,2]时,求函数的最大值和最小值.

(3)若函数gx)=fx)﹣mx的两个零点分别在区间(﹣1,2)和(2,4)内,求m的取值范围.

查看答案和解析>>

同步练习册答案