精英家教网 > 高中数学 > 题目详情
5.已知x,y满足约束条$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤2}\\{y≥0}\end{array}\right.$,若z=ax-3y的最大值为2,则α=1.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤2}\\{y≥0}\end{array}\right.$作出可行域如图,

化目标函数z=ax-3y为$y=\frac{ax}{3}-\frac{z}{3}$,
由图可知,当直线$y=\frac{ax}{3}-\frac{z}{3}$过A(2,0)时,直线在y轴上的截距最小,z有最大值为2,
即2a=2,∴a=1.
故答案为:1.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知集合A={x|(ax-1)(3x+1)>0}=$\left\{{x\left|{-\frac{1}{3}}\right.<x<\frac{1}{a}}\right\}$,则a的取值范围是a<-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知复数z=1+i,则|$\overline{z}$|=(  )
A.$\sqrt{2}$B.0C.1D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.数列1,0,$\frac{1}{3}$,0,$\frac{1}{5}$,0,…的一个通项公式为an=$\left\{\begin{array}{l}{\frac{1}{n},n为奇数}\\{0,n为偶数}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x+2)是偶函数,且当x>2时满足xf′(x)≥2f′(x)+f(x),则(  )
A.2f(1)<f(4)B.2f($\frac{3}{2}$)>f(3)C.f(0)<4f($\frac{5}{2}$)D.f(1)<f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知△ABC的外心O,a,b,c分别为∠A,∠B,∠C的对边,且$\frac{\overrightarrow{AO}•\overrightarrow{BC}}{6}$+$\frac{\overrightarrow{BO}•\overrightarrow{CA}}{3}$+$\frac{\overrightarrow{CO}•\overrightarrow{AB}}{2}$=0,则a,b,c的关系为a2+c2=2b2,∠B的取值范围为(0,$\frac{π}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义符号函数sgnx=$\left\{\begin{array}{l}{1}&{x>0}\\{0}&{x=0}\\{-1\;\;\;}&{x<0}\end{array}\right.$,则f(x)=x+sgnx,则f(x)(  )
A.既是奇函数又是减函数B.既是奇函数又是增函数
C.是有零点的减函数D.是没有零点的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若a≠0,试求函数f(x)=-$\frac{2}{3}$ax3-x2+a2x2+2ax的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a=log${\;}_{\frac{1}{3}}$$\frac{1}{2}$,b=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,c=sin$\frac{1}{2}$,则(  )
A.c<a<bB.a<b<cC.b<a<cD.b<c<a

查看答案和解析>>

同步练习册答案