精英家教网 > 高中数学 > 题目详情
17.定义符号函数sgnx=$\left\{\begin{array}{l}{1}&{x>0}\\{0}&{x=0}\\{-1\;\;\;}&{x<0}\end{array}\right.$,则f(x)=x+sgnx,则f(x)(  )
A.既是奇函数又是减函数B.既是奇函数又是增函数
C.是有零点的减函数D.是没有零点的奇函数

分析 根据条件求出函数f(x)的表达式,作出函数f(x)的图象,利用数形结合进行判断.

解答 解:若x>0,则f(x)=x+1,
若x=0,则f(x)=x=0,
若x<0,则f(x)=x-1,
即f(x)=$\left\{\begin{array}{l}{x+1,}&{x>0}\\{0,}&{x=0}\\{x-1,}&{x<0}\end{array}\right.$,
作出函数f(x)的图象如图:
则函数为奇函数,且函数为增函数,函数的零点为0,
故选:B.

点评 本题主要考查分段函数的应用,求出函数解析式,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.“sinA=$\frac{\sqrt{3}}{2}$”是“∠A=60°”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知平行四边形ABCD的三个顶点坐标分别为A(2,1),B(-1,3),C(3,4),求第四个顶点D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知x,y满足约束条$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤2}\\{y≥0}\end{array}\right.$,若z=ax-3y的最大值为2,则α=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.用三角函数写出满足tanα<1,且α∈(0,π)的α的集合(0,$\frac{π}{4}$)∪($\frac{π}{2}$,π).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求下列函数的导数:
(1)y=x$\sqrt{x}$;
(2)y=log2x2-log2x;
(3)y=-2sin$\frac{x}{2}$(1-2cos2$\frac{x}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦点为F1(-c,0),F2(c,0),P在左支上,若$\frac{{{{|{P{F_2}}|}^2}}}{{|{P{F_1}}|}}$的最小值为8a,求离心率的取值范围(1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列四个命题中:
①若p∨q为真命题,则p与q至少有一个为真命题;
②统计中用相关系数r来衡量两个变量之间线性关系的强弱,且r越大相关性越强;
③“若lgx2=0,则x=1”的否命题为真命题;④双曲线$\frac{x^2}{9-k}-\frac{y^2}{4+k}=1(-4<k<9)$与双曲线$\frac{x^2}{9}-\frac{y^2}{4}=1$有相同的焦点.其中真命题的序号为①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=x2-2tlnx,t>0
(Ⅰ)若t=1,求曲线f(x)在x=1处的切线方程
(Ⅱ)当t>e时,试判断函数f(x)在区间(1,e)内的零点个数.

查看答案和解析>>

同步练习册答案