精英家教网 > 高中数学 > 题目详情

【题目】正四面体中,在平面内,点在线段上,是平面的垂线,在该四面体绕旋转的过程中,直线所成角为,则的最小值是( )

A.B.C.D.

【答案】A

【解析】

根据相对运动,让正四面体保持静止,平面绕着旋转,故其垂直线也绕着旋转,取上的点,使得 ,连接,则,等价于平面绕着旋转,在中,由余弦定理可得

再将原问题抽象为几何模型,平面的垂线可以看做圆锥底面半径,绕着圆锥的轴旋转,可得,进而求出结果.

由题意可知,根据相对运动,让正四面体保持静止,平面绕着旋转,

故其垂直线也绕着旋转,取上的点,使得

连接,则,等价于平面绕着旋转,

中,

如下图所示,

将问题抽象为几何模型,平面的垂线可以看做圆锥底面半径,绕着圆锥的轴旋转,显然

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了鼓励职员工作热情,某公司对每位职员一年来的工作业绩按月进行考评打分;年终按照职员的月平均值评选公司最佳职员并给予相应奖励.已知职员一年来的工作业绩分数的茎叶图如图所示:

1)根据职员的业绩茎叶图求出他这一年的工作业绩的中位数和平均数;

2)由于职员的业绩高,被公司评为年度最佳职员,在公司年会上通过抽奖形式领取奖金.公司准备了六张卡片,其中一张卡片上标注奖金为6千元,两张卡片的奖金为4千元,另外三张的奖金为2千元.规则是:获奖职员需要从六张卡片中随机抽出两张,这两张卡片上的金额数之和作为奖金数.求职员获得奖金6千元的概率;并说明获得奖金6千元和8千元哪个可能性较大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201711月河南省三门峡市成功入围十佳魅力中国城市,吸引了大批投资商的目光,一些投资商积极准备投入到魅力城市的建设之中.某投资公司准备在2018年年初将四百万元投资到三门峡下列两个项目中的一个之中.

项目一:天坑院是黄土高原地域独具特色的民居形式,是人类穴居发展史演变的实物见证.现准备投资建设20个天坑院,每个天坑院投资0.2百万元,假设每个天坑院是否盈利是相互独立的,据市场调研,到2020年底每个天坑院盈利的概率为,若盈利则盈利投资额的40%,否则盈利额为0.

项目二:天鹅湖国家湿地公园是一处融生态、文化和人文地理于一体的自然山水景区.据市场调研,投资到该项目上,到2020年底可能盈利投资额的50%,也可能亏损投资额的30%,且这两种情况发生的概率分别为p.

1)若投资项目一,记为盈利的天坑院的个数,求(用p表示);

2)若投资项目二,记投资项目二的盈利为百万元,求(用p表示);

3)在(1)(2)两个条件下,针对以上两个投资项目,请你为投资公司选择一个项目,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.

1)将曲线上各点的纵坐标伸长为原来的倍(横坐标不变)得到曲线,求的参数方程;

2)若分别是直线与曲线上的动点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,当时,的值域为,当时,的值域为,依此类推,一般地,当时,的值域为,其中为常数,且

1)若,求数列的通项公式;

2)若,问是否存在常数,使得数列满足?若存在,求的值;若不存在,请说明理由;

3)若,设数列的前项和分别为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,墙上有一壁画,最高点离地面4米,最低点离地面2米,观察者从距离墙米,离地面高米的处观赏该壁画,设观赏视角

(1)若问:观察者离墙多远时,视角最大?

(2)若变化时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图数表:

每一行都是首项为1的等差数列,第行的公差为,且每一列也是等差数列,设第行的第项为.

1)证明:成等差数列,并用表示);

2)当时,将数列分组如下:(),(),(),(每组数的个数构成等差数列). 设前组中所有数之和为,求数列的前项和

3)在(2)的条件下,设是不超过20的正整数,当时,求使得不等式恒成立的所有的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,是两个垃圾中转站,的正东方向千米处,的南面为居民生活区.为了妥善处理生活垃圾,政府决定在的北面建一个垃圾发电厂.垃圾发电厂的选址拟满足以下两个要求(可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点到直线的距离要尽可能大).现估测得两个中转站每天集中的生活垃圾量分别约为吨和吨.设

1)求(用的表达式表示);

2)垃圾发电厂该如何选址才能同时满足上述要求?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

讨论的单调性;

恒成立,求实数a的取值范围;

时,设为自然对数的底若正实数满足,证明:

查看答案和解析>>

同步练习册答案