精英家教网 > 高中数学 > 题目详情
已知E、F、G、H分别是空间四边形四条边AB、BC、CD、DA的中点,BD⊥AC.求证:四边形EFGH是矩形.
考点:平面的基本性质及推论
专题:空间位置关系与距离
分析:利用三角形的中位线定理、平行四边形的判定定理可得:四边形EFGH是平行四边形.由EH∥BD,EF∥AC,BD⊥AC,可得EF⊥EH.即可证明平行四边形EFGH是矩形.
解答: 证明:∵E、F分别是空间四边形四条边AB、BC的中点,
∴EF∥AC,EF=
1
2
AC.
同理可得GH∥AC.∴EF
.
1
2
GH.
∴四边形EFGH是平行四边形.
可得EH∥BD,又BD⊥AC,
∴EF⊥EH.
∴平行四边形EFGH是矩形.
点评:本题考查了三角形的中位线定理、平行四边形的判定、矩形的判定定理、异面直线所成的角,考查了推理能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x∈R|0<x<1},B={x∈R|(2x-1)(x+1)≤0},则(∁RA)∩B(  )
A、[0,
1
2
]
B、[-1,0]
C、[
1
2
,1]
D、(-∞,-1]∪[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,|AC|2=
BC
AC
BA
=(-2,-3),
BC
=(m,1),则m的值等于(  )
A、8
B、-8
C、
2
3
D、-
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ADF-BCE中,除DF、CE外,其他的棱长均为2,AB⊥AF,平面ABCD⊥平面ABEF,M,N分别是AC,BF上的中点.
(Ⅰ)求证:MN∥平面ADF;
(Ⅱ)求直线MN与平面ABCD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=exu(x),
(Ⅰ)若u(x)=x2-
5
2
x+2,求函数f(x)的单调递增区间;
(Ⅱ)若u(x)=x2+ax-3-2a,设函数g(x)=(a2+14)ex+4.当a>0时,分别求出f(x)和g(x)在x∈[0,4]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinx,
3
cosx),
b
=(cosx,cosx),若函数f(x)=
a
b

(1)若x∈[0,
π
2
],求f(x)得最小值.
(2)求函数f(x)的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线l1,l2的倾斜角为直线y=
3
x+1的倾斜角的一半,且满足下列条件的直线l1,l2的方程;
(1)直线l1经过点(-4,1); 
(2)直线l2在y轴上的截距为-10.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-tx-1(e为自然对数的底数).
(1)求函数f(x)的单调增区间;
(2)设不等式f(x)>-2tx-1的解集为M,且集合{x|0<x≤2}⊆M,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的方程:x4-2ax2-x+a2-a=0(-0.25≤a<0.75).

查看答案和解析>>

同步练习册答案