精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两支球队进行总决赛,比赛采用五场三胜制,即若有一队先胜三场,则此队为总冠军,比赛就此结束.因两队实力相当,每场比赛两队获胜的可能性均为二分之一.据以往资料统计,第一场比赛可获得门票收入40万元,以后每场比赛门票收入比上一场增加10万元.

(1)求总决赛中获得门票总收入恰好为150万元且甲获得总冠军的概率;

(2)设总决赛中获得的门票总收入为,求的分布列和数学期望

【答案】(1)(2)见解析

【解析】

(1)由已知总决赛中获得门票总收入恰好为150万元且甲获得总冠军即甲连胜3场 ,由此能求出总决赛中获得门票总收入恰好为150万元且甲获得总冠军的概率.
(2)由已知得,分别求出相应的概率,由此能求出的分布列和数学期望

(1)已知总决赛中获得门票总收入恰好为150万元且甲获得总冠军即甲连胜3场,则其概率为

(2)随机变量X可取的值为150,220,300.

P(X=150)=2×P(X=220)=C××P(X=300)=C××.

分布列如下:

所以X的数学期望为E(X)=150×+220×+300×=232.5(万元).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知x、y满足约束条件 ,若目标函数z=ax+by(a>0,b>0)的最大值为7,则 的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m、n∈R+ , f(x)=|x+m|+|2x﹣n|.
(1)求f(x)的最小值;
(2)若f(x)的最小值为2,证明:4(m2+ )的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={(x,y)|y=f(x)},若对于任意(x1 , y1)∈M,存在(x2 , y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:
①M={ };
②M={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x};
④M={(x,y)|y=ex﹣2}.
其中是“垂直对点集”的序号是(
A.①②
B.②③
C.①④
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,为一台冷轧机的示意图,冷轧机由若干对轧辊组成,带钢从一端输入,经过各对轧辊逐步减薄后输出.(轧钢过程中,钢带宽度不变,且不考虑损耗)

一对对轧辊的减薄率.

(1)输入钢带的厚度为,输出钢带的厚度为,若每对轧辊的减薄率不超过,问冷轧机至少需要安装几对轧辊?

(2)已知一台冷轧机共有4对减薄率为的轧辊,所有轧辊周长均为,若第对轧辊有缺陷,每滚动一周在刚带上压出一个疵点,在冷轧机输出的刚带上,疵点的间距为,易知,为了便于检修,请计算.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某程序框图如图所示,现输入如下四个函数,则可以输出的函数是(

A.f(x)=x2
B.f(x)=sinx
C.f(x)=ex
D.f(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列{an}中,a2=3,a5=81,bn=1+2log3an
(1)求数列{bn}的前n项的和;
(2)已知数列 的前项的和为Sn , 证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知PA与圆O相切于点A,经过点O的割线PBC交圆O于点B,C,∠APC的平分线分别交AB,AC于点D,E.
(Ⅰ)证明:∠ADE=∠AED;
(Ⅱ)若AC=AP,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线与坐标轴的交点都在圆上.

(1)求圆的方程;

(2)若圆与直线交于两点,且,求的值.

查看答案和解析>>

同步练习册答案