精英家教网 > 高中数学 > 题目详情
抛物线的焦点为,其上的动点在准线上的射影为,若是等边三角形,则的横坐标是(  )
A.B.C.D.
A

试题分析:设准线与轴的交点为P,在中,,所以,所以.
点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质非常重要,而且经常应用,要牢固掌握.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

以椭圆内的点M(1,1)为中点的弦所在直线的方程为(   )
A.4x-y-3=0B.x-4y+3=0
C.4x+y-5=0D.x+4y-5=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共14分)
已知椭圆C:,左焦点,且离心率
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线与椭圆C交于不同的两点不是左、右顶点),且以为直径的圆经过椭圆C的右顶点A.   求证:直线过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的方程是(),它的两个焦点分别为,且,弦AB(椭圆上任意两点的线段)过点,则的周长为      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线=1的焦点到渐近线的距离为(   )。
A.2B.2C.D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的右焦点,且,设短轴的一个端点为,原点到直线的距离为,过原点和轴不重合的直线与椭圆相交于两点,且.
(1)求椭圆的方程;
(2)是否存在过点的直线与椭圆相交于不同的两点,且使得成立?若存在,试求出直线的方程;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆的中心在坐标原点O,长轴长为2,离心率e=,过右焦点F的直线l交椭圆于P、Q两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若OP、OQ为邻边的平行四边形是矩形,求满足该条件的直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

与双曲线的渐近线相切,则的值是 _______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线轴上的截距为交椭圆于A、B两个不同点.
(1)求椭圆的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与轴始终围成一个等腰三角形.

查看答案和解析>>

同步练习册答案