精英家教网 > 高中数学 > 题目详情
(本小题共14分)
已知椭圆C:,左焦点,且离心率
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线与椭圆C交于不同的两点不是左、右顶点),且以为直径的圆经过椭圆C的右顶点A.   求证:直线过定点,并求出定点的坐标.
(1) (2) 直线过定点,且定点的坐标为 

试题分析:解:(Ⅰ)由题意可知:   ……1分
解得                  ………2分
所以椭圆的方程为:                         ……3分
(II)证明:由方程组   …4分

整理得                         ………..5分

             …….6分
由已知,且椭圆的右顶点为         ………7分
                  ………    8分   


也即  …… 10分
整理得:                       ……11分
解得均满足                       ……12分
时,直线的方程为,过定点(2,0)与题意矛盾舍去……13分
时,直线的方程为,过定点    
故直线过定点,且定点的坐标为                          …….14分
点评:解决的关键是熟练的根据椭圆的性质来得到椭圆的方程,同时能结合联立方程组的思想来,韦达定理和垂直关系,得到直线方程,进而求解。属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆)的离心率为,过右焦点且斜率为1的直线交椭圆两点,为弦的中点。
(1)求直线为坐标原点)的斜率
(2)设椭圆上任意一点,且,求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线 (a>0,b>0) 的焦点到渐近线的距离是a,则双曲线的离心率的值是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在轴上,一条经过点且方向向量为的直线交椭圆两点,交轴于点,且

(1)求直线的方程;
(2)求椭圆长轴长的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)
已知椭圆)过点(0,2),离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过定点(2,0)的直线与椭圆相交于两点,且为锐角(其中为坐标原点),求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆左、右焦点分别为F1、F2,点,点F2在线段PF1的中垂线上。
(1)求椭圆C的方程;
(2)设直线与椭圆C交于M、N两点,直线F2M与F2N的倾斜角互补,求证:直线过定点,并求该定点的坐标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,过抛物线y2="2px" (p0)的焦点F的直线交抛物线于点A、B,交其准线于点C,若|BC|=2|BF|,且|AF|=3.则此抛物线的方程为(    )

A.y2=—x
B.y2=9x
C.y2=x
D. y2=3x

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知椭圆的右焦点为F,离心率,椭圆C上的点到F的距离的最大值为,直线l过点F与椭圆C交于不同的两点A、B.
(1) 求椭圆C的方程;
(2) 若,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点为,其上的动点在准线上的射影为,若是等边三角形,则的横坐标是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案