精英家教网 > 高中数学 > 题目详情
已知椭圆的中心在原点,焦点在轴上,一条经过点且方向向量为的直线交椭圆两点,交轴于点,且

(1)求直线的方程;
(2)求椭圆长轴长的取值范围.
(1);(2)

试题分析:(1)直线过点且方向向量为
方程为
化简为:
∴直线的方程为
(2)设直线和椭圆交于两点,和轴交于,由,知
代入中,得……①
由韦达定理知:
由②2/③知:,化为  ……④

化简,得,即
,注意到,解得
又椭圆的焦点在轴上,则
由④知:,结合,求得
因此所求椭圆长轴长范围为
点评:中档题,涉及椭圆与直线位置关系问题,往往利用韦达定理。本题借助于韦达定理,建立方程组后,整理得到,进一步利用求得a的范围。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知直线l经过点(0,-2),其倾斜角是60°.
(1)求直线l的方程;
(2)求直线l与两坐标轴围成三角形的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程表示焦点在轴的双曲线,则的取值范围是(      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以椭圆内的点M(1,1)为中点的弦所在直线的方程为(   )
A.4x-y-3=0B.x-4y+3=0
C.4x+y-5=0D.x+4y-5=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以双曲线:的右焦点为圆心,并与其渐近线相切的圆的标准方程是______

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线,若过右焦点F且倾斜角为30°的直线与双曲线的右支有两个交点,则此双曲线离心率的取值范围是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点为椭圆的右顶点, 点,点在椭圆上, .


(1)求直线的方程;
(2)求直线被过三点的圆截得的弦长;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共14分)
已知椭圆C:,左焦点,且离心率
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线与椭圆C交于不同的两点不是左、右顶点),且以为直径的圆经过椭圆C的右顶点A.   求证:直线过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆的中心在坐标原点O,长轴长为2,离心率e=,过右焦点F的直线l交椭圆于P、Q两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若OP、OQ为邻边的平行四边形是矩形,求满足该条件的直线l的方程.

查看答案和解析>>

同步练习册答案