精英家教网 > 高中数学 > 题目详情
以椭圆内的点M(1,1)为中点的弦所在直线的方程为(   )
A.4x-y-3=0B.x-4y+3=0
C.4x+y-5=0D.x+4y-5=0
D

试题分析:根据题意,设由于直线的斜率存在,故设直线方程为y-1=k(x-1),然后代入椭圆方程中,可知 ,故可知,故直线方程为x+4y-5=0,选D.
点评:本题考查直线和圆锥曲线的位置关系,一元二次方程根与系数的关系,中点公式的应用,求出直线的斜率,是解题的关键
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

双曲线与椭圆有相同的焦点,且该双曲线
的渐近线方程为
(1)求双曲线的标准方程;
(2) 过该双曲线的右焦点作斜率不为零的直线与此双曲线的左,右两支分别交于点
,当轴上的点满足时,求点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线 (a>0,b>0) 的焦点到渐近线的距离是a,则双曲线的离心率的值是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线经过的定点的坐标是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线上任意一点;
(1)求证:点到双曲线的两条渐近线的距离的乘积是一个常数;
(2)设点,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线与曲线相切于点,则的值为 (    )
A.5B. 6 C. 4D. 9

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在轴上,一条经过点且方向向量为的直线交椭圆两点,交轴于点,且

(1)求直线的方程;
(2)求椭圆长轴长的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)
已知椭圆)过点(0,2),离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过定点(2,0)的直线与椭圆相交于两点,且为锐角(其中为坐标原点),求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点为,其上的动点在准线上的射影为,若是等边三角形,则的横坐标是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案