精英家教网 > 高中数学 > 题目详情
已知双曲线 (a>0,b>0) 的焦点到渐近线的距离是a,则双曲线的离心率的值是     

试题分析:根据题意,由于双曲线 (a>0,b>0) 的焦点到渐近线的距离是a,根据点到直线的距离公式可知为b,因此可知a=b,那么可知双曲线的离心率为等轴双曲线的离心率即为,答案为
点评:本题考查双曲线的简单性质;考查双曲线中几何量之间的关系,考查数形结合的能力,属于基础题
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若点O和点F(﹣2, 0)分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线l经过点(0,-2),其倾斜角是60°.
(1)求直线l的方程;
(2)求直线l与两坐标轴围成三角形的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线实轴在轴,且实轴长为2,离心率,  L是过定点的直线.
(1)求双曲线的标准方程;
(2)判断L能否与双曲线交于,两点,且线段恰好以点为中点,若存在,求出直线L的方程,若不存,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若方程C:是常数)则下列结论正确的是(  )
A.,方程C表示椭圆B.,方程C表示双曲线
C.,方程C表示椭圆D.,方程C表示抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点M是圆C:上的一点,且轴,为垂足,点满足,记动点的轨迹为曲线E.
(Ⅰ)求曲线E的方程;
(Ⅱ)若AB是曲线E的长为2的动弦,O为坐标原点,求面积S的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程表示焦点在轴的双曲线,则的取值范围是(      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以椭圆内的点M(1,1)为中点的弦所在直线的方程为(   )
A.4x-y-3=0B.x-4y+3=0
C.4x+y-5=0D.x+4y-5=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共14分)
已知椭圆C:,左焦点,且离心率
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线与椭圆C交于不同的两点不是左、右顶点),且以为直径的圆经过椭圆C的右顶点A.   求证:直线过定点,并求出定点的坐标.

查看答案和解析>>

同步练习册答案