精英家教网 > 高中数学 > 题目详情
18.已知角α的终边与单位圆在第二象限交于点P(m,$\frac{4}{5}$)
(1)求m的值
(2)求cos(α+$\frac{π}{4}$)

分析 (1)由题意可得:m2+($\frac{4}{5}$)2=1,结合点P在第二象限,可求m的值.
(2)由三角函数定义可求cosα,sinα的值,进而利用两角和的余弦函数公式即可计算得解.

解答 (本题满分为10分)
解:(1)∵由题意可得:m2+($\frac{4}{5}$)2=1,…(2分)
m=±$\frac{3}{5}$,…(3分)
∵点P在第二象限,
∴$m=-\frac{3}{5}$.…(5分)
(2)由三角函数定义可知,cosα=-$\frac{3}{5}$,sinα=$\frac{4}{5}$,…(7分)
可得:$cos(α+\frac{π}{4})=cosαcos\frac{π}{4}-sinαsin\frac{π}{4}$…(8分)
=-$\frac{3}{5}×\frac{\sqrt{2}}{2}$-$\frac{4}{5}×\frac{\sqrt{2}}{2}$…(9分)
=-$\frac{7\sqrt{2}}{10}$.…(10分)

点评 本题主要考查了三角函数定义,两角和的余弦函数公式的应用,考查了数形结合思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.4个不同的小球全部随意放入3个不同的盒子里,使每个盒子都不空的放法种数为(  )
A.C${\;}_{4}^{1}$C${\;}_{4}^{3}$C${\;}_{2}^{2}$B.A${\;}_{3}^{1}$A${\;}_{4}^{3}$
C.C${\;}_{4}^{3}$A${\;}_{2}^{2}$D.${C}_{4}^{2}{A}_{3}^{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)是定义在R上的偶函数,且 f(2)=0,当x>0时,有xf′(x)-f(x)>0恒成立,则不等式f(x)<0的解集为(  )
A.(-∞,-2)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-2,0)∪(0,2)D.(-2,0)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数中,图象的一部分符合右图的是(  )
A.$y=sin(x+\frac{π}{6})$B.$y=sin(2x-\frac{π}{6})$C.$y=sin(2x+\frac{π}{6})$D.$y=sin(2x+\frac{π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.一半径为4m的水轮(如图),水轮圆心O距离水面2m,已知水轮每分钟转动4圈,如果当水轮上点P从水中浮现时(图中点P0)开始计时.
(1)将点P距离水面的高度h(m)表示为时间t(s)的函数;
(2)在水轮转动的一圈内,有多长时间点P距水面的高度超过4m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.欲证$\sqrt{2}-\sqrt{3}<\sqrt{6}-\sqrt{7}$,只需证(  )
A.${({\sqrt{2}+\sqrt{7}})^2}<{({\sqrt{3}+\sqrt{6}})^2}$B.${({\sqrt{2}-\sqrt{6}})^2}<{({\sqrt{3}-\sqrt{7}})^2}$C.${({\sqrt{2}-\sqrt{3}})^2}<{({\sqrt{6}-\sqrt{7}})^2}$D.${({\sqrt{2}-\sqrt{3}-\sqrt{6}})^2}<{({-\sqrt{7}})^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设a>0,b>0,且a+b=$\frac{1}{a}$+$\frac{1}{b}$.证明:
(1)设$M=\frac{1}{a+1}+\frac{1}{b+1}$,$N=\frac{a}{a+1}+\frac{b}{b+1}$,求证M=N
(2)a2+a<2与b2+b<2不可能同时成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD,底面ABCD是边长为2的菱形,$∠ABC=\frac{π}{3}$,且PA⊥平面ABCD.
(Ⅰ)证明:平面PAC⊥平面PBD;
(Ⅱ)设点E是线段AP的中点,且AE=1,求点E到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数$f(x)=\frac{a}{3}{x^3}-\frac{3}{2}{x^2}+(a+1)x+1$,其中a为实数.
(Ⅰ)若函数f(x)在x=1处取得极值,求a的值;
(Ⅱ)若不等式f'(x)<-4x+2+a对任意x∈(1,+∞)都成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案