精英家教网 > 高中数学 > 题目详情
5.△ABC中,$AB=\sqrt{2}$,BC=2,$sinA=\frac{{\sqrt{14}}}{4}$,则sinC=(  )
A.$\frac{{\sqrt{3}}}{4}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{7}}}{4}$D.$\frac{{\sqrt{7}}}{3}$

分析 由已知利用正弦定理即可计算求值.

解答 解:∵$AB=\sqrt{2}$,BC=2,$sinA=\frac{{\sqrt{14}}}{4}$,
∴利用正弦定理可得:sinC=$\frac{ABsinA}{BC}$=$\frac{\sqrt{2}×\frac{\sqrt{14}}{4}}{2}$=$\frac{\sqrt{7}}{4}$.
故选:C.

点评 本题主要考查了正弦定理在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在数列{an}中,a1=$\frac{1}{2}$,a2=$\frac{1}{3}$,anan+2=1,则a2016+a2017=(  )
A.$\frac{5}{6}$B.$\frac{7}{3}$C.$\frac{7}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,且过点P($\sqrt{6}$,1),O为坐标原点,
(1)求椭圆E的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且$\overrightarrow{OA}$⊥$\overrightarrow{OB}$?若存在,写出该圆的方程,并求|AB|的取值范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如右图,三棱锥A-BCD的顶点B、C、D在平面α内,CA=AB=BC=CD=DB=2,AD=$\sqrt{6}$,若将该三棱锥以BC为轴转动,到点A落到平面α内为止,则A、D两点所经过的路程之和是$\sqrt{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow a$,$\overrightarrow b$的夹角为$\frac{π}{3}$,且$|{\overrightarrow a}|=1$,$|{\overrightarrow a+\overrightarrow b}|=\sqrt{7}$,则$|{\overrightarrow b}|$等于(  )
A.2B.3C.$\sqrt{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如果一扇形的弧长为2πcm,半径等于2cm,则扇形所对圆心角为π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数$y={log_{\frac{1}{2}}}({-{x^2}+2x})的$的单调增区间是[1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知α,β为不重合的平面,m,n为不重合的直线,下列命题:
①若m∥n,n∥α,则m∥α;            ②若m⊥α,m⊥β,则α∥β;
③若α∩β=n,m∥α,m∥β,则m∥n;   ④若m∥n,m⊥α,则n⊥α.
其中是真命题的有②③④. (填写所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数$f(x)=\frac{1}{3}{x^3}-\frac{1}{4}{x^4}$在区间(0,3)上的极值点为1.

查看答案和解析>>

同步练习册答案