精英家教网 > 高中数学 > 题目详情
8.设f(x)是R上的偶函数,对?x∈R都有f(2+x)=-f(x),当x∈[0,1]时,f(x)=-x2+1;当x∈(1,2]时,f(x)=x-2.则f(x)=0的在[-1,5]上的所有根的和为10.

分析 由f(x+2)=-f(x),可知f(x)是周期为4的周期函数. 再由f(x)是偶函数,当x∈[0,1]时,f(x)=-x2+1,可得函数在[-1,5]上的解析式,令f(x)=0,求出函数的根,求和即可.

解答 解:∵对任意的x∈R,都有f(2+x)=-f(x),
∴f(4+x)=f(x),
故f(x)是周期为4的周期函数.
∵函数f(x)是偶函数,
∴当x∈[-1,0]时,f(x)=-x2+1,
即x∈[-1,1]时,f(x)=-x2+1,①,
令-x2+1=0,解得:x=±1;
当1≤x≤3时,-1≤x-2≤1,
∵f(2+x)=-f(x),
∴f(x)=-f(x-2),
此时f(x)=-f(x-2)=-[-(x-2)2+1]=(x-2)2-1,②,
令(x-2)2-1=0,解得:x=0或x=2;
3≤x≤5时,-1≤x-4≤1,
此时f(x)=f(x-4)=-(x-4)2+1,③,
令-(x-4)2+1=0,解得:x=3或5,
故f(x)在[-1,5]上所有的根是:-1,0,1,2,3,5,
和是10,
故答案为:10.

点评 本题主要考查方程根的个数的判断,根据条件求出函数的周期性,利用函数函数的零点与方程的根的关系是解决本题的关键,体现了转化、数形结合的数学思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.某公司购买了A,B,C三种不同品牌的电动智能送风口罩.为了解三种品牌口罩的电池性能,现采用分层抽样的方法,从三种品牌的口罩中抽出25台,测试它们一次完全充电后的连续待机时长,统计结果如下(单位:小时):
A444.555.566
B4.5566.56.5777.5
C555.566777.588
(Ⅰ)已知该公司购买的C品牌电动智能送风口罩比B品牌多200台,求该公司购买的B品牌电动智能送风口罩的数量;
(Ⅱ)从A品牌和B品牌抽出的电动智能送风口罩中,各随机选取一台,求A品牌待机时长高于B品牌的概率;
(Ⅲ)再从A,B,C三种不同品牌的电动智能送风口罩中各随机抽取一台,它们的待机时长分别是a,b,c(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0.若μ0≤μ1,写出a+b+c的最小值(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在复平面内,复数$z=\frac{2i}{1+i}$,则$\overline z$对应的点的坐标位于第(  )象限.
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)={log_{\frac{1}{2}}}({{x^2}-2ax+3})$.
(1)若f(x)定义域为R,求实数a的取值范围;
(2)若f(x)值域为R,求实数a的取值范围;
(3)是否存在a∈R,使f(x)在(-∞,2)上单调递增,若存在,求出a的取值范围;不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直四棱柱ABCD-A1B1C1D1中,AB=4,AA1=2$\sqrt{3}$,底面ABCD为菱形,且∠BAD=60°.
(1)求证:平面ACC1A1⊥平面BDC1
(2)求三棱锥D1-C1BD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则AC1与平面A1B1C1D1所成的角的正弦值为(  )
A.$\frac{1}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.$\frac{2}{3}$D.$\frac{{\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知p:实数x满足x2-4ax+3a2≤0,其中a<0;q:实数x满足x2+5x+4<0,且p是q的充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.下列四个命题:
①圆(x+2)2+(y+1)2=4与直线x-2y=0相交,所得弦长为2;
②直线y=kx与圆(x-cosθ)2+(y-sinθ)2=1恒有公共点;
③“a=2”是“直线ax+2y=0平行于直线x+y=1”的充分不必要条件.
④若棱长为$\sqrt{2}$的正四面体的顶点都在同一球面上,则该球的体积为$\frac{\sqrt{3}}{2}$π.
其中,正确命题的序号为②④.写出所有正确命的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某班级50名学生的考试分数x分布在区间[50,100)内,设分数x的分布频率是f(x)且f(x)=$\left\{\begin{array}{l}{\frac{n}{10}-0.4,10n≤x<10(n+1),n=5,6,7}\\{-\frac{n}{5}+b,10n≤x<10(n+1),n=8,9}\end{array}\right.$,考试成绩采用“5分制”,规定:考试分数在[50,60)内的成绩记为1分,考试分数在[60,70)内的成绩记为2分,考试分数在[70,80)内的成绩记为3分,考试分数在[80,90)内的成绩记为4分,考试分数在[90,100)内的成绩记为5分.用分层抽样的方法,现在从成绩在1分,2分及3分的人中用分层抽样随机抽出6人,再从这6人中抽出3人,记这3人的成绩之和为ξ(将频率视为概率).
(1)求b的值,并估计班级的考试平均分数;
(2)求P(ξ=7);
(3)求ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案