精英家教网 > 高中数学 > 题目详情
20.已知p:实数x满足x2-4ax+3a2≤0,其中a<0;q:实数x满足x2+5x+4<0,且p是q的充分条件,求a的取值范围.

分析 分别求出关于p,q成立的x的范围,根据充分必要条件的定义得到关于a的不等式组,解出即可.

解答 解:由已知条件得,
∵实数x满足x2-4ax+3a2<0,其中a<0,
∴(x-a)(x-3a)<0,解得:3a<x<a,
∴命题p:3a<x<a,
∵x2+5x+4≤0,
∴(x+1)(x+4)≤0
命题q:-4≤x≤-1,
p是q的充分条件,
∴$\left\{\begin{array}{l}{3a≥-4}\\{a≤-1}\end{array}\right.$,解得:-$\frac{4}{3}$≤a≤-1.

点评 本题考查了充分必要条件考查解不等式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若复数z满足$\overline{z}$-|z|=-1-3i,其中i为虚数单位,则z=(  )
A.4+3iB.3+4iC.-5+3iD.4-3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.椭圆$\frac{x^2}{4}+\frac{y^2}{9}=1$的长轴长为(  )
A.2B.4C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设f(x)是R上的偶函数,对?x∈R都有f(2+x)=-f(x),当x∈[0,1]时,f(x)=-x2+1;当x∈(1,2]时,f(x)=x-2.则f(x)=0的在[-1,5]上的所有根的和为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x3-ax2-3x.
(1)若$x=-\frac{1}{3}$是函数f(x)的极值点,求函数f(x)在[1,a]上的最大值;
(2)设函数g(x)=f(x)-bx,在(1)的条件下,若函数g(x)恰有3个零点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知点A(2,-1,2),B(4,5,-1),C(-2,2,3),且$\overrightarrow{AP}=\frac{1}{2}\overrightarrow{CB}$,则P点的坐标为(  )
A.(5,5,0)B.$(5,\frac{1}{2},0)$C.$(-1,\frac{1}{2},0)$D.(-1,5,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知双曲线C:$\frac{x^2}{a^2}-4{y^2}=1({a>0})$的右顶点到其一条渐近线的距离等于$\frac{{\sqrt{3}}}{4}$,抛物线E:y2=2px的焦点与双曲线C的右焦点重合,则抛物线E上的动点M到直线l1:4x-3y+6=0和l2:x=-1的距离之和的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知$|{\overrightarrow a}|=|{\overrightarrow b}|$,且$|{\overrightarrow a-\overrightarrow b}|=\sqrt{3}|{\overrightarrow a+\overrightarrow b}|$,则$\overrightarrow a$与$\overrightarrow b$的夹角大小为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=x2-4x+a对于一切x∈[0,1]时,恒有f(x)≥0成立,则实数a的取值范围是(  )
A.[3,+∞)B.(3,+∞)C.(-∞,3]D.(-∞,3)

查看答案和解析>>

同步练习册答案