精英家教网 > 高中数学 > 题目详情
3.在直四棱柱ABCD-A1B1C1D1中,AB=4,AA1=2$\sqrt{3}$,底面ABCD为菱形,且∠BAD=60°.
(1)求证:平面ACC1A1⊥平面BDC1
(2)求三棱锥D1-C1BD的体积.

分析 (1)连接AC交BD于O,由底面ABCD为菱形,得AC⊥BD,再由已知直四棱柱可得CC1⊥BD,由线面垂直的判定可得BD⊥平面ACC1A1,进一步得到平面ACC1A1⊥平面BDC1
(2)由已知求出三角形DD1C1的面积,过点B作BH⊥CD交CD于H,则BH为三棱锥B-DD1C1的高,求出BH,再由等积法求得三棱锥D1-C1BD的体积.

解答 (1)证明:连接AC交BD于O,
∵底面ABCD为菱形,∴AC⊥BD,
又ABCD-A1B1C1D1为直四棱柱,∴CC1⊥BD,
∵AC∩CC1=C,∴BD⊥平面ACC1A1
∵BD?平面BDC1,∴平面ACC1A1⊥平面BDC1
(2)解:由题知${V_{{D_1}-{C_1}BD}}={V_{B-D{D_1}{C_1}}}$,
又${S_{△D{D_1}{C_1}}}=\frac{1}{2}×2\sqrt{3}×4=4\sqrt{3}$,
过点B作BH⊥CD交CD于H,则BH为三棱锥B-DD1C1的高,且$BH=4sin60°=2\sqrt{3}$.
∴${V_{{D_1}-{C_1}BD}}={V_{B-D{D_1}{C_1}}}=\frac{1}{3}×2\sqrt{3}×4\sqrt{3}=8$.

点评 本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若x,y满足$\left\{\begin{array}{l}x-y+2≤0\\ x+y-7≤0\\ x≥1\end{array}\right.$,则 $\frac{y}{x}$的取值范围是[$\frac{9}{5}$,6].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2p{t}^{2}}\\{y=2pt}\end{array}\right.$(t为参数,p>0),在极坐标系(以原点O为极点,以x轴正半轴为极轴)中,曲线C2:ρ2-10ρcosθ+16=0,已知斜率为1的直线l与C1相交于A,B两点,与C2相切于点M,且M为线段AB的中点.则p的值为$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.椭圆$\frac{x^2}{4}+\frac{y^2}{9}=1$的长轴长为(  )
A.2B.4C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知下“斜二测”画法下,△ABC的直观图是一个边长为4的正三角形,则△ABC的面积为(  )
A.$\sqrt{6}$B.$8\sqrt{6}$C.$16\sqrt{6}$D.$4\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设f(x)是R上的偶函数,对?x∈R都有f(2+x)=-f(x),当x∈[0,1]时,f(x)=-x2+1;当x∈(1,2]时,f(x)=x-2.则f(x)=0的在[-1,5]上的所有根的和为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x3-ax2-3x.
(1)若$x=-\frac{1}{3}$是函数f(x)的极值点,求函数f(x)在[1,a]上的最大值;
(2)设函数g(x)=f(x)-bx,在(1)的条件下,若函数g(x)恰有3个零点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知双曲线C:$\frac{x^2}{a^2}-4{y^2}=1({a>0})$的右顶点到其一条渐近线的距离等于$\frac{{\sqrt{3}}}{4}$,抛物线E:y2=2px的焦点与双曲线C的右焦点重合,则抛物线E上的动点M到直线l1:4x-3y+6=0和l2:x=-1的距离之和的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.有三个数成等差数列,前两个数的和的3倍正好是第三个数的2倍,如果把第二个数减去2,那么所得数是第一个数与第三个数的等比中项.求原来的三个数.

查看答案和解析>>

同步练习册答案