分析 设成等差数列的三个数分别为a-d,a,a+d,运用等比数列的中项的性质,结合条件可得a,d的方程,解方程,即可得到所求三个数.
解答 解:设成等差数列的三个数分别为a-d,a,a+d,
由题意,得$\left\{\begin{array}{l}3(2a-d)=2(a+d)\\(a-d)(a+d)={(a-2)^2}\end{array}\right.$
即$\left\{\begin{array}{l}4a=5d\\ 4a={d^2}+4\end{array}\right.$,
解得,$\left\{\begin{array}{l}d=4\\ a=5\end{array}\right.$或$\left\{\begin{array}{l}d=1\\ a=\frac{5}{4}\end{array}\right.$,
所以,原来的三个数分别为1,5,9或$\frac{1}{4},\frac{5}{4},\frac{9}{4}$.
点评 本题考查等差数列通项公式的运用,注意设出等差数列中连续的三个数,考查方程思想和运算求解能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{3}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{6}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{4}+\frac{1}{4}i$ | B. | $\frac{1}{4}+\frac{{\sqrt{3}}}{4}i$ | C. | $\frac{{\sqrt{3}}}{4}-\frac{1}{4}i$ | D. | $\frac{1}{4}-\frac{{\sqrt{3}}}{4}i$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com