精英家教网 > 高中数学 > 题目详情
9.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2p{t}^{2}}\\{y=2pt}\end{array}\right.$(t为参数,p>0),在极坐标系(以原点O为极点,以x轴正半轴为极轴)中,曲线C2:ρ2-10ρcosθ+16=0,已知斜率为1的直线l与C1相交于A,B两点,与C2相切于点M,且M为线段AB的中点.则p的值为$\frac{3\sqrt{2}}{2}$.

分析 参数方程、极坐标方程化为普通方程,利用点差法,求出M的坐标,代入圆的方程,即可求出p的值.

解答 解:曲线C1的参数方程为$\left\{\begin{array}{l}{x=2p{t}^{2}}\\{y=2pt}\end{array}\right.$(t为参数,p>0),普通方程为y2=2px,
曲线C2:ρ2-10ρcosθ+16=0,普通方程为(x-5)2+y2=9,
设A(x1,y1),B(x2,y2),M(x0,y0),则y12=2px1,y22=2px2
相减得(y1+y2)(y1-y2)=2p(x1-x2),
当l的斜率=1时,利用点差法可得y0=p,
因为直线与圆相切,所以$\frac{{y}_{0}}{{x}_{0}-5}$=-1,所以x0=5-p,
∴M(5-p,p)
代入(x-5)2+y2=9,∴p=$\frac{3\sqrt{2}}{2}$,
故答案为$\frac{3\sqrt{2}}{2}$.

点评 本题考查三种方程的转化,考查点差法的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知m是直线,α,β是两个互相垂直的平面,则“m∥α”是“m⊥β”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设a+b=M(a>0,b>0),M为常数,且ab的最大值为2,则M等于2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.i是虚数单位,复数$\frac{2+{i}^{3}}{1-i}$=(  )
A.$\frac{3+i}{2}$B.$\frac{1+3i}{2}$C.$\frac{1+i}{2}$D.$\frac{3+2i}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前9项和为153,且点P(an,an+1)(n∈N+)在直线x-y+3=0上
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)从数列{an}中,依次去除第2项、第8项、第24项…第n•2n项,按原来的顺序组成一个新的数列{bn},求数列{bn}的前n项和Sn
(Ⅲ)求证:$\frac{1}{{b}_{1}}+\frac{1}{{b}_{2}}+$…+$\frac{1}{{b}_{n}}$<$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在复平面内,复数$z=\frac{2i}{1+i}$,则$\overline z$对应的点的坐标位于第(  )象限.
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线l过点P(2,0),斜率为$\frac{4}{3}$,直线l和抛物线y2=2x相交于A,B两点,设线段AB的中点为M,求:
(1)点M的坐标;
(2)线段AB的长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直四棱柱ABCD-A1B1C1D1中,AB=4,AA1=2$\sqrt{3}$,底面ABCD为菱形,且∠BAD=60°.
(1)求证:平面ACC1A1⊥平面BDC1
(2)求三棱锥D1-C1BD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知{an}为各项都为正数的等比数列,a1=1,a5=256,Sn为等差数列{bn}的前n项和,b1=2,5S5=2S8
(1)求{an}和{bn}的通项公式;
(2)设Tn=a1b1+a2b2+…+anbn,求Tn

查看答案和解析>>

同步练习册答案