精英家教网 > 高中数学 > 题目详情
(2012•北京)已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2,若同时满足条件:
①?x∈R,f(x)<0或g(x)<0;
②?x∈(-∞,-4),f(x)g(x)<0.
则m的取值范围是
(-4,-2)
(-4,-2)
分析:①由于g(x)=2x-2≥0时,x≥1,根据题意有f(x)=m(x-2m)(x+m+3)<0在x>1时成立,根据二次函数的性质可求
②由于x∈(-∞,-4),f(x)g(x)<0,而g(x)=2x-2<0,则f(x)=m(x-2m)(x+m+3)>0在x∈(-∞,-4)时成立,结合二次函数的性质可求
解答:解:对于①∵g(x)=2x-2,当x<1时,g(x)<0,
又∵①?x∈R,f(x)<0或g(x)<0
∴f(x)=m(x-2m)(x+m+3)<0在x≥1时恒成立
则由二次函数的性质可知开口只能向下,且二次函数与x轴交点都在(1,0)的左面
m<0
-m-3<1
2m<1

∴-4<m<0即①成立的范围为-4<m<0
又∵②x∈(-∞,-4),f(x)g(x)<0
∴此时g(x)=2x-2<0恒成立
∴f(x)=m(x-2m)(x+m+3)>0在x∈(-∞,-4)有成立的可能,则只要-4比x1,x2中的较小的根大即可
(i)当-1<m<0时,-m-3<-4不成立,
(ii)当m=-1时,有2等根,不成立
(iii)当-4<m<-1时,2m<-4即m<-2成立
综上可得①②成立时-4<m<-2
故答案为:(-4,-2)
点评:本题主要考查了全称命题与特称命题的成立,指数函数与二次函数性质的应用是解答本题的关键
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•北京)已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若?x∈R,f(x)<0或g(x)<0,则m的取值范围是
(-4,0)
(-4,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京)已知函数f(x)=ax2+1(a>0),g(x)=x3+bx
(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a、b的值;
(2)当a2=4b时,求函数f(x)+g(x)的单调区间,并求其在区间(-∞,-1)上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京)已知{an}为等差数列,Sn为其前n项和,若a1=
1
2
,S2=a3,则a2=
1
1
,Sn=
1
4
n(n+1)
1
4
n(n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京)已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.
(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处有公共切线,求a,b的值;
(2)当a=3,b=-9时,函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京)已知函数f(x)=
(sinx-cosx)sin2xsinx

(1)求f(x)的定义域及最小正周期;
(2)求f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案