【题目】在三棱柱中,侧面为矩形, , , 是的中点, 与交于点,且平面.
(1)证明:平面平面;
(2)若, 的重心为,求直线与平面所成角的正弦值.
【答案】(1)证明见解析;(2).
【解析】试题分析:(1)通过证明, ,推出平面,然后证明平面平面.(2)以为坐标原点,分别以, , 所在直线为, , 轴建立如图所示的空间直角坐标系.求出平面的法向量,设直线与平面所成角,利用空间向量的数量积求解直线与平面所成角的正弦值即可.
试题解析:(1)∵为矩形, , , 是的中点,
∴, , , ,
从而, ,
∵, ,∴,
∴,
∴,从而,
∵平面, 平面,
∴,
∵,∴平面,
∵平面,
∴平面平面.
(2)如图,以为坐标原点,分别以, , 所在直线为, , 轴建立如图所示的空间直角坐标系.
在矩形中,由于,所以和相似,
从而,
又, ,
∴, , , ,
∴, , , , ,
∵为的重心,∴, ,
设平面的法向量为,
, ,
由可得整理得
令,则, ,∴,
设直线与平面所成角,则
,
所以直线与平面所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】已知D,E,F分别为△ABC的边BC,CA,AB的中点,记 =a , =b.则下列命题中正确的个数是( )
① = a-b;② =a+ b;③ = a+ b;④ 0.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+3x+a
(1)当a=﹣2时,求不等式f(x)>2的解集
(2)若对任意的x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga (a>0,a≠1,m≠﹣1),是定义在(﹣1,1)上的奇函数.
(1)求f(0)的值和实数m的值;
(2)当m=1时,判断函数f(x)在(﹣1,1)上的单调性,并给出证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=ax2+2(a﹣3)x+1在区间[﹣2,+∞)上递减,则实数a的取值范围是( )
A.(﹣∞,﹣3]
B.[﹣3,0]
C.[﹣3,0)
D.[﹣2,0]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(1)求证:AC⊥BC1;
(2)求证:AC1∥平面CDB1;
(3)求二面角B﹣DC﹣B1的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】盒中有6只灯泡,其中有2只是次品,4只是正品.从中任取2只,试求下列事件的概率.
(Ⅰ)取到的2只都是次品;
(Ⅱ)取到的2只中恰有一只次品.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,2,在Rt△ABC中,AB=BC=4,点E在线段AB上,过点E作交AC于点F,将△AEF沿EF折起到△PEF的位置(点A与P重合),使得∠PEB=60°.
(1)求证:EF⊥PB;
(2)试问:当点E在何处时,四棱锥P﹣EFCB的侧面的面积最大?并求此时四棱锥P﹣EFCB的体积及直线PC与平面EFCB所成角的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com