精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=x2+2aln(1-x)(a∈R),试求:
(1)当a=-2时,求函数f(x)的单调区间和极值;
(2)若f(x)在[-1,1)上是单调函数,求实数a的取值范围.

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;
(2)若f(x)在[-1,1)上是单调函数,则[-1,1)必为函数某一单调区间的子区间,先带着参数a求函数的单调区间,再比较[-1,1)区间端点与函数的几个单调区间的端点大小,即可得到a的范围.

解答 解:(1)f(x)=-4ln(1-x)+x2,定义域为(-∞,1),
f′(x)=2x+$\frac{4}{1-x}$=$\frac{-2(x-2)(x+1)}{1-x}$,
令f'(x)>0,解得:得x>-1,令f′(x)<0,解得:x<-1,
故f(x)在(-1,1)递增,在(-∞,-1)递减,
f(x)极小值=f(-1)=1-4ln2.
(2)f′(x)=2x-$\frac{2a}{1-x}$,若f'(x)≥0,
即2x-$\frac{2a}{1-x}$≥0⇒a≤[x(1-x)]min⇒a≤-2,
若f'(x)≤0,即2x-$\frac{2a}{1-x}$≤0⇒a≥[x(1-x)]max⇒a≥$\frac{1}{4}$,
所以a≤-2或a≥$\frac{1}{4}$.

点评 本题考查了应用导数求极值,单调区间,以及导数和数列的综合应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ex-ax2+1的定义域为R,其导函数为f'(x)
(1)若f(x)在(0,+∞)上单调递增,求实数a的取值范围;
(2)若a=1,证明:$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>2-2ln2,其中x1≠x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.半径为1的球O内有一个内接正三棱柱,当正三棱柱的侧面积最大时,球的表面积与该正三棱柱的侧面积之差是4π-3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在等比数列{an}中,公比q≠1,等差数列{bn}满足b1=a1=3,b4=a2,b13=a3
(I)求数列{an}与{bn}的通项公式;
(II)记cn=(-1)nbn+an,求数列{cn}的前2n项和S2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}中,a1=2,nan+1=2(n+1)an,则a5=(  )
A.320B.160C.80D.40

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在三棱锥A-BCD中,E是AC中点,F在AD上,且2AF=FD,若三棱锥A-BEF的体积是1,则四棱锥B-ECDF的体积为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去△AOB,将剩余部分沿OC、OD折叠,使OA、OB重合,则以A(B)、C、D、O为顶点的四面体的外接球表面积为(  )
A.20πB.24πC.16πD.18π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数y=f(x)是定义在R+上的函数,并且满足下面三个条件:(1)对任意正数x、y,都有f(xy)=f(x)+f(y);(2)当x>1时,f(x)<0;(3)f(3)=-1,
(1)求f(1)、$f(\frac{1}{9})$的值;
(2)判断函数的单调性并证明
(3)如果不等式f(x)+f(2-x)<2成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知等边三角形的一个顶点坐标是($\frac{\sqrt{3}}{4}$,0),另外两个顶点在抛物线y2=$\sqrt{3}$x上,则这个等边三角形的边长为(  )
A.3B.6C.2$\sqrt{3}$±3D.2$\sqrt{3}$+3

查看答案和解析>>

同步练习册答案