精英家教网 > 高中数学 > 题目详情

如图所示,圆柱的高为2,底面半径为,AE、DF是圆柱的两条母线,过作圆柱的截面交下底面于,四边形ABCD是正方形.

(Ⅰ)求证
(Ⅱ)求四棱锥E-ABCD的体积.

(Ⅰ)详见解析;(Ⅱ)

解析试题分析:(Ⅰ)根据AE是圆柱的母线,所以下底面,又下底面,则 
又截面ABCD是正方形,所以,又⊥面,又,即可得到BC⊥BE;
(Ⅱ)根据锥体的体积公式即可求四棱锥E-ABCD的体积.
试题解析:(Ⅰ)AE是圆柱的母线,
下底面,又下底面,           .3分
截面ABCD是正方形,所以,又
⊥面,又             (7分)
(Ⅱ)因为母线垂直于底面,所以是三棱锥的高      (8分),
由(Ⅰ)知⊥面⊥面

,即EO就是四棱锥的高       (10分)
设正方形的边长为, 则
为直径,即
中,,   即
,                          (12分)


考点:1.棱柱、棱锥、棱台的体积;2.空间中直线与直线之间的垂直关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝.再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).

(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米).
(2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出灯笼的三视图(作图时,不需考虑骨架等因素).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一个四棱锥PABCD的三视图(正视图与侧视图为直角三角形,俯视图是带有一条对角线的正方形)如图,E是侧棱PC的中点.

(1)求四棱锥PABCD的体积;
(2)求证:平面APC⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图C,D是以AB为直径的圆上的两点,,F是AB上的一点,且,将圆沿AB折起,使点C在平面ABD的射影E在BD上,已知

(1)求证:AD平面BCE
(2)求证:AD//平面CEF;
(3)求三棱锥A-CFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面是菱形,的中点,点在侧棱上.

(1)求证:⊥平面
(2)若的中点,求证://平面
(3)若,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD为矩形,四边形ADEF为梯形,AD//FE,∠AFE=60º,且平面ABCD⊥平面ADEF,AF=FE=AB==2,点G为AC的中点.

(Ⅰ)求证:EG//平面ABF;
(Ⅱ)求三棱锥B-AEG的体积;
(Ⅲ)试判断平面BAE与平面DCE是否垂直?若垂直,请证明;若不垂直,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

()如图,四棱锥中,平面,底面是平行四边形,,的中点

(Ⅰ)求证:
(Ⅱ)试在线段上确定一点,使,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直三棱柱的三视图如图所示,且的中点.

(Ⅰ)求证:∥平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)试问线段上是否存在点,使 角?若存在,确定点位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直四棱柱ABCD–A1B1C1D1中,AB//CD,AD⊥AB,AB=2,AD=,AA1=3,E为CD上一点,DE=1,EC=3

(1)证明:BE⊥平面BB1C1C;
(2)求点到平面EA1C1的距离.

查看答案和解析>>

同步练习册答案