精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,已知向量=(-1,2),又点A(8,0),B(n,t),C(ksinθ,t)
(1)若,且为坐标原点),求向量
(2)若向量与向量共线,当k>4,且tsinθ取最大值4时,求
【答案】分析:(1)根据所给的点的坐标写出向量的坐标,根据两个向量垂直数量积为零,得到一个关于变量的方程,题目另一个条件是两个向量模长之间的关系,列出方程解出结果.
(2)根据向量共线的充要条件,写出变量之间的关系式,根据二次函数的最值特点得到结果,求出变量的值写出向量的数量积.
解答:解:(1)∵点A(8,0),B(n,t),



得n=2t+8.
,又
∴(2t)2+t2=5×64,
解得t=±8,
当t=8时,n=24;当t=-8时,n=-8.

(2)∵向量与向量共线,
∴t=-2ksinθ+16,
∵k>4,

故当时,tsinθ取最大值,有,得k=8.
这时,,k=8,tsinθ=4,得t=8,则

点评:要让学生体会思路的形成过程,体会数学思想方法的应用.要学生发现解题方法和思路的形成过程,总结解题规律.学生要搞好解题后的反思,从而提高学生综合应用知识分析和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为:pcos(θ-
π3
)=1
,M,N分别为曲线C与x轴,y轴的交点,则MN的中点P在平面直角坐标系中的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)设α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是
 
(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,下列函数图象关于原点对称的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(1,0)为圆心,r为半径作圆,依次与抛物线y2=x交于A、B、C、D四点,若AC与BD的交点F恰好为抛物线的焦点,则r=
 

查看答案和解析>>

同步练习册答案