精英家教网 > 高中数学 > 题目详情
20.(本小题满分14分)

四棱锥中,侧棱,底面是直角梯形,,且的中点.
(1)求异面直线所成的角;
(2)线段上是否存在一点,使得?若存在,求出的值;若不存在,请说明理由.
解:以为坐标原点,分别以轴、轴、轴的正方向建立空间直角坐标系,则.………2分

(1).
……4分
,即异面直线所成的角为.…………7分
(2)假设线段上存在一点,使,设.
,则,即
.…………8分
.
,即.
即线段上存在一点,使得,且.………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图已知正四棱柱ABCD----A1B1C1D1,AB=1,AA1=2,点E为CC1的中点,点F为BD1的中点。

(1)证明:EF⊥平面;
(2)求点A1到平面BDE的距离;
(3)求BD1与平面BDE所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法正确的是(   )
A.垂直于同一平面的两平面也平行.
B.与两条异面直线都相交的两条直线一定是异面直线.
C.过一点有且只有一条直线与已知直线垂直;
D.垂直于同一直线的两平面平行;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正△ABC的边长为4,CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A—DC—B。
(1)试判断直线AB与平面DEF的位置关系,并说明理由;
(2)求二面角E—DF—C的余弦值;
(3)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

如图,矩形中,上的点,且
(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)在四棱锥P—ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB
(Ⅰ)求证:平面PAC⊥平面PBD;
(Ⅱ)求二面角B—PC—D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间中垂直于同一条直线的两条直线的位置关系是
A.平行B.相交C.异面D.以上都有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

纸质的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标“△”的面的方位是
A.南B.北C.西D.下

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于E,交DP于F.求证:四边形BCFE是梯形.

查看答案和解析>>

同步练习册答案