精英家教网 > 高中数学 > 题目详情
(本小题满分12分)

如图,矩形中,上的点,且
(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)求三棱锥的体积.
(Ⅰ)证明:平面.∴平面,则.……(2分)
平面,则.∴平面.                ……(4分)
(Ⅱ)证明:依题意可知:中点.平面,则,而
中点.                                                      ………(6分)
中,,∴平面.                            ………(8分)
(Ⅲ)解法一:平面,∴,而平面
平面,∴平面.                              ………(9分)
  中点,∴中点.∴
平面,∴.                                    ……(10分)
中,.∴.      ……(11分)
.                                  ……(12分)
解法二:      ……(12分) u
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在底面是矩形的四棱锥中,.
(1)求证:平面
(2)若的中点,求异面直线所成角的余弦值;
(3)在上是否存在一点,使得到平面的距离为1?若存在,求出,若不存在,请说明理由。(10分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m是平面α的一条斜线,点A∈α,l为过点A的一条动直线,那么下列情形可能出现的是 (    )
A.l∥m,l⊥αB.l⊥m,l⊥α
C.l⊥m,l∥αD.l∥m,l∥α

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正三棱锥P—ABC中,∠APB=∠BPC=∠CPA=90°,PA=PB=PC=a,AB的中点M,一小蜜蜂沿锥体侧面由M爬到C点,最短路程是                            (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

20.(本小题满分14分)

四棱锥中,侧棱,底面是直角梯形,,且的中点.
(1)求异面直线所成的角;
(2)线段上是否存在一点,使得?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在多面体ABCDE中,AE⊥面ABC,DB//AE,且AC=AB=BC=AE=1,BD=2,F为CD中点。
(1)求证:EF⊥平面BCD;
(2)求多面体ABCDE的体积;
(3)求平面ECD和平面ACB所成的锐二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知顶点的坐标为.
1)求点到直线的距离的面积
(2)求外接圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如右图,测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点,测得.,米,并在点测得塔顶的仰角为,则塔高=  ▲   

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列命题正确的有    
①若直线与平面有两个公共点,则直线在平面内;
②若直线上有无数个点不在平面α内,则∥α;
③若直线与平面α相交,则与平面α内的任意直线都是异面直线;
④如果两条异面直线中的一条与一个平面平行,则另一条直线一定与该平面相交;
⑤若直线与平面α平行,则与平面α内的直线平行或异面;
⑥若平面α∥平面β,直线aα,直线bβ,则直线a∥b.

查看答案和解析>>

同步练习册答案