精英家教网 > 高中数学 > 题目详情
已知顶点的坐标为.
1)求点到直线的距离的面积
(2)求外接圆的方程.
(1)解:直线方程为:

到直线的距离=

=
(2)设外接圆的方程为:
把三点分别代入,得:D=,F=0
求的外接圆的方程为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

如图,矩形中,上的点,且
(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)平面EFGH分别平行空间四边形ABCD中的CD与AB且交BD、AD、
AC、BC于E、F、G、H.CD=a,AB=b,CD⊥AB.
(1)求证EFGH为矩形;
(2)点E在什么位置,SEFGH最大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,点D是AB的中点。
(1)求证:AC ⊥ BC1
(2)求证:AC// 平面CDB1
(3)求多面体的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,PA垂直于矩形 ABCD所在的平面,M、N分别是AB、PC的中点
⑴求证:MN∥平面PAD;
⑵若,求证:MN⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间中垂直于同一条直线的两条直线的位置关系是
A.平行B.相交C.异面D.以上都有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点.

(1)求证:BE∥平面PDF;
(2)求证:平面PDF⊥平面PAB;
(3)求三棱锥P-DEF的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

αβ表示平面,l表示不在α内也不在β内的直线,存在下列三个事实:
lα;②lβ;③αβ,若以其中两个作为条件,另一个作为结论,可构成三个命题,其中真命题是_________.(要求写出所有真命题)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本小题满分13分)
如图,已知ABCD是边长为2的正方形,平面ABCD,平面ABCD,且FB=2DE=2。

(1)求点E到平面FBC的距离;
(2)求证:平面平面AFC。

查看答案和解析>>

同步练习册答案