精英家教网 > 高中数学 > 题目详情
本小题满分13分)
如图,已知ABCD是边长为2的正方形,平面ABCD,平面ABCD,且FB=2DE=2。

(1)求点E到平面FBC的距离;
(2)求证:平面平面AFC。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知顶点的坐标为.
1)求点到直线的距离的面积
(2)求外接圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,五面体ABCDE中,正ABC的边长为1,AE平面ABC,CD∥AE,且CD=AE.
(I)设CE与平面ABE所成的角为,AE=的取值范围;
(Ⅱ)在(I)和条件下,当取得最大值时,求平面BDE与平面ABC所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知PA面ABC,ABBC,若PA=AC=2,AB=1
(1)求证:面PAB面PBC; (2)求二面角A-PC-B的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在三棱锥P-ABC内,已知PA=PC=AC=,AB=BC=1,面PAC⊥面ABC,E是BC的中点.

(1)求直线PE与AC所成角的余弦值;
(2)求直线PB与平面ABC所成的角的正弦值;
(3)求点C到平面PAB的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥PABCD中,PD⊥平面ABCDADCDDB平分∠ADCEPC的中点,ADCD=1,DB=2.

(1)证明PA∥平面BDE
(2)证明AC⊥平面PBD

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在平面内,ABCD的菱形,都是正方形。将两个正方形分别沿AD,CD折起,使重合于点D1。设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧,设(图2)。

(1)设二面角E – AC – D1的大小为q,若,求的取值范围;
(2)在线段上是否存在点,使平面平面,若存在,求出所成的比;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在三棱柱ABCA1B1C1中,侧AA1B1B是边长为2的正方形,点C在平面AA1B1B上的射影H恰好为A1B的中点,且CH=,设D中点,

(Ⅰ)求证:平面
(Ⅱ)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(12分)
如图,已知四棱锥的底面为矩形,平面分别为的中点.

(Ⅰ)求证:
(Ⅱ)求二面角的大小值.

查看答案和解析>>

同步练习册答案