精英家教网 > 高中数学 > 题目详情
如图,在四棱锥PABCD中,PD⊥平面ABCDADCDDB平分∠ADCEPC的中点,ADCD=1,DB=2.

(1)证明PA∥平面BDE
(2)证明AC⊥平面PBD
解:(1)证明:设ACBDH
连结EH.在△ADC中,因为ADCD,且DB平分∠ADC,所以HAC          
的中点.
又由题设,EPC的中点,故EHPA.又EH?平面BDEPA ?平面BDE
所以PA∥平面BDE.
(2)证明:因为PD⊥平面ABCDAC?平面ABCD,所以PDAC.
由(1)可得,DBAC.又PDDBD,故AC⊥平面PBD.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,在一个由矩形与正三角形组合而成的平面图形中,现将正三角形沿折成四棱锥,使在平面内的射影恰好在边上.


(1)求证:平面⊥平面
(2)求直线与平面所成角的正弦值.

第20题

 
                             

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体的侧面内有一动点到直线与直线的距离相等,则动点 所在的曲线的形状为…………(     )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,平行四边形ABCD中,沿BD将折起,使面,连结AC,则在四面体ABCD的四个面中,互相垂直的平面共有(   )对
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知矩形内接于圆柱下底面的圆是圆柱的母线,若,此圆柱的体积为,求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

αβ表示平面,l表示不在α内也不在β内的直线,存在下列三个事实:
lα;②lβ;③αβ,若以其中两个作为条件,另一个作为结论,可构成三个命题,其中真命题是_________.(要求写出所有真命题)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,空间四边形OABC中,=a,=b,=c,点M在OA上,且OM=MA,N为BC中点,则等于                            (    )
A.-a+b+cB.a-b+cC.a+b-cD.a+b-c

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本小题满分13分)
如图,已知ABCD是边长为2的正方形,平面ABCD,平面ABCD,且FB=2DE=2。

(1)求点E到平面FBC的距离;
(2)求证:平面平面AFC。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为,则(    )
A.1:1B.2:1C.3:1D.4:1

查看答案和解析>>

同步练习册答案