精英家教网 > 高中数学 > 题目详情
已知矩形内接于圆柱下底面的圆是圆柱的母线,若,此圆柱的体积为,求异面直线所成角的余弦值.
解:设圆柱下底面圆的半径为,连
由矩形内接于圆,可知是圆的直径,
于是,得,  ……………3分
又圆柱的体积,可得.……6分
分别以直线轴,建立空间直角坐标
,可得,………8分
设异面直线所成角所成的角,向量的夹角为

故异面直线所成角的余弦值为.    ………………………………12分 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,五面体ABCDE中,正ABC的边长为1,AE平面ABC,CD∥AE,且CD=AE.
(I)设CE与平面ABE所成的角为,AE=的取值范围;
(Ⅱ)在(I)和条件下,当取得最大值时,求平面BDE与平面ABC所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥PABCD中,PD⊥平面ABCDADCDDB平分∠ADCEPC的中点,ADCD=1,DB=2.

(1)证明PA∥平面BDE
(2)证明AC⊥平面PBD

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在平面内,ABCD的菱形,都是正方形。将两个正方形分别沿AD,CD折起,使重合于点D1。设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧,设(图2)。

(1)设二面角E – AC – D1的大小为q,若,求的取值范围;
(2)在线段上是否存在点,使平面平面,若存在,求出所成的比;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直二面角D—AB—E中,四边形ABCD是边长为2的正方形,AE=EB,点F在CE上,且平面ACE。

(I)求证:平面BCE;
(II)求二面角B—AC—E的正弦值;
(III)求点D到平面ACE的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

17.(本小题满分8分)如图,正方体ABCDA1B1C1D1中,EDD1中点,
(1)求证:BD1∥平面AEC
(2)求:异面直线BDAD1所成的角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在三棱柱ABCA1B1C1中,侧AA1B1B是边长为2的正方形,点C在平面AA1B1B上的射影H恰好为A1B的中点,且CH=,设D中点,

(Ⅰ)求证:平面
(Ⅱ)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共14分)
如图,在四棱柱中,底面是正方形,侧棱与底面垂直,点是正方形对角线的交点,,点分别在上,且

(Ⅰ)求证:∥平面
(Ⅱ)若,求的长;
(Ⅲ)在(Ⅱ)的条件下,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

    (本小题满分12分)
如图,四边形ABCD为正方形,四边形BDEF为矩形,AB=2BF,E丄平面ABCD,G为EF中点.

(1)求证:CF//平面
(2) 求证:平面ASG丄平面CDG;
(3)求二面角C—FG—B的余弦值.

查看答案和解析>>

同步练习册答案