精英家教网 > 高中数学 > 题目详情
如图,平行四边形ABCD中,沿BD将折起,使面,连结AC,则在四面体ABCD的四个面中,互相垂直的平面共有(   )对
A.1B.2C.3D.4
C
考点:
分析:由题意,找出直线与平面垂直的个数,然后可得结论.
解:由题意直线AB⊥平面BCD,直线CD⊥平面ABD,
所以:面ABD⊥面BCD,面ABC⊥面BCD,面ABD⊥面ACD
共有3对
故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如右图所示,已知四边形ABCD为直角梯形,AD∥BC,∠ABC=90°,PA⊥平面AC,且PA=AD=AB=1,BC=2.

(1)求PC的长;
(2)求异面直线PC与BD所成角的余弦值的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥PABCD中,PD⊥平面ABCDADCDDB平分∠ADCEPC的中点,ADCD=1,DB=2.

(1)证明PA∥平面BDE
(2)证明AC⊥平面PBD

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在平面内,ABCD的菱形,都是正方形。将两个正方形分别沿AD,CD折起,使重合于点D1。设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧,设(图2)。

(1)设二面角E – AC – D1的大小为q,若,求的取值范围;
(2)在线段上是否存在点,使平面平面,若存在,求出所成的比;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直二面角D—AB—E中,四边形ABCD是边长为2的正方形,AE=EB,点F在CE上,且平面ACE。

(I)求证:平面BCE;
(II)求二面角B—AC—E的正弦值;
(III)求点D到平面ACE的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图:已知△PAB所在的平面与菱形ABCD所在的平面垂直,且PA=PB=AB,∠ABC=60°,E为AB的中点.        

(Ⅰ)证明:CE⊥PA;
(Ⅱ)若F为线段PD上的点,且EF与平面PEC的
夹角为45°,求平面EFC与平面PBC夹角的
余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(12分)
如图,已知四棱锥的底面为矩形,平面分别为的中点.

(Ⅰ)求证:
(Ⅱ)求二面角的大小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知三个平面,若,且相交但不垂直,直线分别为内的直线,则下列命题中:①任意;②任意; ③存在; ④存在; ⑤任意; ⑥存在。真命题的序号是_________ 。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

    (本小题满分12分)
如图,四边形ABCD为正方形,四边形BDEF为矩形,AB=2BF,E丄平面ABCD,G为EF中点.

(1)求证:CF//平面
(2) 求证:平面ASG丄平面CDG;
(3)求二面角C—FG—B的余弦值.

查看答案和解析>>

同步练习册答案