精英家教网 > 高中数学 > 题目详情
(12分)平面EFGH分别平行空间四边形ABCD中的CD与AB且交BD、AD、
AC、BC于E、F、G、H.CD=a,AB=b,CD⊥AB.
(1)求证EFGH为矩形;
(2)点E在什么位置,SEFGH最大?


又∵AB⊥CDEF⊥FGEFGH为矩形.
(2)AG=x,AC=m,
  GH=x
 
=  GF=(m-x)
SEFGH=GH·GF=(m-x)
=(mx-x2)= (-x2+mx-+
=[-(x-2+
当x=时,SEFGH最大=·=
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在底面是矩形的四棱锥中,.
(1)求证:平面
(2)若的中点,求异面直线所成角的余弦值;
(3)在上是否存在一点,使得到平面的距离为1?若存在,求出,若不存在,请说明理由。(10分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在多面体ABCDE中,AE⊥面ABC,DB//AE,且AC=AB=BC=AE=1,BD=2,F为CD中点。
(1)求证:EF⊥平面BCD;
(2)求多面体ABCDE的体积;
(3)求平面ECD和平面ACB所成的锐二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如下图所示,哪些是正四面体的展开图,其序号是(   )

(1)(3)           (2)(4)            (3)(4)         (1)(2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分14分)如图,四棱锥的底面是正方形,侧棱底面分别是棱的中点.
(1)求证:;  (2) 求直线与平面所成的角的正切值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于不重合的两个平面,给定下列条件:
①存在直线;         
②存在平面
内有不共线的三点到的距离相等;       
④存在异面直线
其中,可以判定平行的条件有                  (   )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知顶点的坐标为.
1)求点到直线的距离的面积
(2)求外接圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,五面体ABCDE中,正ABC的边长为1,AE平面ABC,CD∥AE,且CD=AE.
(I)设CE与平面ABE所成的角为,AE=的取值范围;
(Ⅱ)在(I)和条件下,当取得最大值时,求平面BDE与平面ABC所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列命题正确的有    
①若直线与平面有两个公共点,则直线在平面内;
②若直线上有无数个点不在平面α内,则∥α;
③若直线与平面α相交,则与平面α内的任意直线都是异面直线;
④如果两条异面直线中的一条与一个平面平行,则另一条直线一定与该平面相交;
⑤若直线与平面α平行,则与平面α内的直线平行或异面;
⑥若平面α∥平面β,直线aα,直线bβ,则直线a∥b.

查看答案和解析>>

同步练习册答案