精英家教网 > 高中数学 > 题目详情
下列命题正确的有    
①若直线与平面有两个公共点,则直线在平面内;
②若直线上有无数个点不在平面α内,则∥α;
③若直线与平面α相交,则与平面α内的任意直线都是异面直线;
④如果两条异面直线中的一条与一个平面平行,则另一条直线一定与该平面相交;
⑤若直线与平面α平行,则与平面α内的直线平行或异面;
⑥若平面α∥平面β,直线aα,直线bβ,则直线a∥b.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

一个无盖的正方体盒子展开后的平面图形(如图),ABC是展开图上的三点,若回复到正方体盒子中,∠ABC的大小是(    ).
A、 90°      B、45°      C 60°       D、30°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

叙述并证明直线与平面垂直的判定定理.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

如图,矩形中,上的点,且
(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图,在四棱锥E-ABCD中,底面ABCD为正方形, AE⊥平面CDE,已知AE=3,DE=4.

(Ⅰ)若F为DE的中点,求证:BE//平面ACF;
(Ⅱ)求直线BE与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)平面EFGH分别平行空间四边形ABCD中的CD与AB且交BD、AD、
AC、BC于E、F、G、H.CD=a,AB=b,CD⊥AB.
(1)求证EFGH为矩形;
(2)点E在什么位置,SEFGH最大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

纸质的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标“△”的面的方位是
A.南B.北C.西D.下

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

αβ表示平面,l表示不在α内也不在β内的直线,存在下列三个事实:
lα;②lβ;③αβ,若以其中两个作为条件,另一个作为结论,可构成三个命题,其中真命题是_________.(要求写出所有真命题)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知三条不同的直线,c和平面,有以下六个命题:
①若   ②若异面
③若   ④若
⑤若直线异面,异面,则异面
⑥若直线相交,相交,则相交
其中是真命题的编号为____              。    

查看答案和解析>>

同步练习册答案