精英家教网 > 高中数学 > 题目详情
(本题满分14分)如图,在四棱锥E-ABCD中,底面ABCD为正方形, AE⊥平面CDE,已知AE=3,DE=4.

(Ⅰ)若F为DE的中点,求证:BE//平面ACF;
(Ⅱ)求直线BE与平面ABCD所成角的正弦值.
解:(Ⅰ)设AC与BD相交于G,连结GF.
正方形ABCD,,又,
,………………………………………2分
平面ACF,平面ACF,
平面ACF………………………………3分
(Ⅱ)解法一:过E点作EH⊥AD,垂足为H,连结BH……….1分
平面CDE,,又,,
平面ADE,,,平面ABCD,
所以是直线BE与平面ABCD所成的角…………………….4分
Rt中,AE=3,DE=4,,
所以直线BE与平面ABCD所成角的正弦值为......4分
解法二:平面CDE,,又,,
平面ADE, ,,........4分
Rt中,AE=3,DE=4,,即,
设直线BE与平面ABCD所成角为,
所以直线BE与平面ABCD所成角的正弦值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图四棱锥,底面四边形ABCD满足条件,侧面SAD垂直于底面ABCD,

(1)若SB上存在一点E,使得平面SAD,求的值;
(2)求此四棱锥体积的最大值;
(3)当体积最大时,求二面角A-SC-B大小的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角的余弦值为     (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正三棱锥P—ABC中,∠APB=∠BPC=∠CPA=90°,PA=PB=PC=a,AB的中点M,一小蜜蜂沿锥体侧面由M爬到C点,最短路程是                            (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题満分12分)
如图,在正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点.
(Ⅰ)证明AD⊥D1F;
(Ⅱ)求AE与D1F所成的角;
(Ⅲ)证明面AED⊥面A1FD1;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

日常生活中,常用到的螺母可以看成一个组合体,其结构特征是
A.一个棱柱中挖去一个棱柱B.一个棱柱中挖去一个圆柱
C.一个圆柱中挖去一个棱锥D.一个棱台中挖去一个圆柱

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如下图所示,哪些是正四面体的展开图,其序号是(   )

(1)(3)           (2)(4)            (3)(4)         (1)(2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,已知斜三棱柱的底面是直角三角形,,侧棱与底面所成的角为,点在底面上的射影落在上.

(1)若点恰为的中点,且,求的值.

(2)若,且当时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列命题正确的有    
①若直线与平面有两个公共点,则直线在平面内;
②若直线上有无数个点不在平面α内,则∥α;
③若直线与平面α相交,则与平面α内的任意直线都是异面直线;
④如果两条异面直线中的一条与一个平面平行,则另一条直线一定与该平面相交;
⑤若直线与平面α平行,则与平面α内的直线平行或异面;
⑥若平面α∥平面β,直线aα,直线bβ,则直线a∥b.

查看答案和解析>>

同步练习册答案