分析 (1)解:当PQ⊥x轴时,-2<m<2,把x=m代入椭圆方程可得:$\frac{{m}^{2}}{4}$+y2=1,解得y.再利用数量积运算性质即可得出.
(2)设直线PQ的方程为:ty=x-m,(-2≤m<2).P(x1,y1),Q(x2,y2).与椭圆方程联立可得:(t2+4)y2+2tmy+m2-4=0,利用斜率计算公式及其根与系数的关系代入k1•k2=$\frac{{y}_{1}{y}_{2}}{{t}^{2}{y}_{1}{y}_{2}+(m-2)t({y}_{1}+{y}_{2})+(m-2)^{2}}$,即可证明.
解答 (1)解:当PQ⊥x轴时,-2<m<2,把x=m代入椭圆方程可得:$\frac{{m}^{2}}{4}$+y2=1,解得y=±$\frac{\sqrt{4-{m}^{2}}}{2}$.
不妨设P$(m,\frac{\sqrt{4-{m}^{2}}}{2})$,Q$(m,-\frac{\sqrt{4-{m}^{2}}}{2})$.A(2,0).
则$\overrightarrow{AP}•\overrightarrow{AQ}$=$(m-2,\frac{\sqrt{4-{m}^{2}}}{2})$•$(m-2,-\frac{\sqrt{4-{m}^{2}}}{2})$=(m-2)2-$\frac{4-{m}^{2}}{4}$=$\frac{5{m}^{2}-16m+12}{4}$.
(2)证明:设直线PQ的方程为:ty=x-m,(-2≤m<2).P(x1,y1),Q(x2,y2).
联立$\left\{\begin{array}{l}{ty=x-m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,化为:(t2+4)y2+2tmy+m2-4=0,
y1+y2=-$\frac{2tm}{{t}^{2}+4}$,y1y2=$\frac{{m}^{2}-4}{{t}^{2}+4}$.
k1•k2=$\frac{{y}_{1}}{{x}_{1}-2}$$•\frac{{y}_{2}}{{x}_{2}-2}$=$\frac{{y}_{1}{y}_{2}}{(t{y}_{1}+m-2)(t{y}_{2}+m-2)}$=$\frac{{y}_{1}{y}_{2}}{{t}^{2}{y}_{1}{y}_{2}+(m-2)t({y}_{1}+{y}_{2})+(m-2)^{2}}$=$\frac{m+2}{4m-8}$.
由于上式与斜率无关系,因此是定值.
点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、一元二次方程的根与系数的关系、向量数量积运算性质、斜率计算公式,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,sinx≤1 | B. | ?x∈R,sinx>1 | C. | ?x∈R,sinx=1 | D. | ?x∈R,sinx≤1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (k-$\frac{1}{8}$,k+$\frac{1}{8}$),k∈Z | B. | (2k-$\frac{1}{8}$,2k+$\frac{1}{8}$),k∈Z | C. | (4k-$\frac{1}{8}$,4k+$\frac{1}{8}$),k∈Z | D. | (8k-$\frac{1}{8}$,8k+$\frac{1}{8}$),k∈Z |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com