精英家教网 > 高中数学 > 题目详情
9.已知如图,△ABC中,AD是BC边的中线,∠BAC=120°,且$\overrightarrow{AB}•\overrightarrow{AC}$=-$\frac{15}{2}$.
(Ⅰ)求△ABC的面积;
(Ⅱ)若AB=5,求AD的长.

分析 (Ⅰ)由已知展开数量积,求出AB•AC的值,代入三角形面积公式得答案;
(Ⅱ)解法1:由AB=5,结合(Ⅰ)求得AC,延长AD到E,使AD=DE,连结BE,得到四边形ABEC为平行四边形,求出∠ABE=60°,设AD=x,则AE=2x,在△ABE中,由余弦定理求得x值得答案;
解法2:在△ABC中,由余弦定理得BC,再由正弦定理求得∠ACD的正弦值,进一步求得其余弦值,在△ADC中,利用余弦定理求得AD;
解法3:在△ABC中,由余弦定理得BC,在△ABC中,由余弦定理求出∠ACB,在△ADC中,由余弦定理求得AD.

解答 解:(Ⅰ)∵$\overrightarrow{AB}•\overrightarrow{AC}=-\frac{15}{2}$,
∴$AB•AC•cos∠BAC=-\frac{1}{2}AB•AC=-\frac{15}{2}$,
即AB•AC=15,
∴${S_{△ABC}}=\frac{1}{2}AB•ACsin∠BAC=\frac{1}{2}×15×\frac{{\sqrt{3}}}{2}=\frac{{15\sqrt{3}}}{4}$;
(Ⅱ)解法1:由AB=5,得AC=3,
延长AD到E,使AD=DE,连结BE,
∵BD=DC,
∴四边形ABEC为平行四边形,
∴∠ABE=60°,且BE=AC=3,
设AD=x,则AE=2x,在△ABE中,由余弦定理得:(2x)2=AB2+BE2-2AB•BEcos∠ABE=25+9-15=19,
解得$x=\frac{{\sqrt{19}}}{2}$,即AD的长为$\frac{{\sqrt{19}}}{2}$;
解法2:由AB=5,得AC=3,
在△ABC中,由余弦定理得:BC2=AB2+AC2-2AB•ACcos∠BAC=25+9+15=49,
得BC=7,
由正弦定理得:$\frac{BC}{sin∠BAC}=\frac{AB}{sin∠ACD}$,
得$sin∠ACD=\frac{ABsin∠BAC}{BC}=\frac{{5×\frac{{\sqrt{3}}}{2}}}{7}=\frac{{5\sqrt{3}}}{14}$,
∵0°<∠ACD<90°,
∴$cos∠ACD=\sqrt{1-{{sin}^2}∠ACD}=\frac{11}{14}$,
在△ADC中,$A{D^2}=A{C^2}+C{D^2}-2AC•CDcos∠ACD=9+\frac{49}{4}-2×3×\frac{7}{2}×\frac{11}{14}=\frac{19}{4}$,
解得$AD=\frac{{\sqrt{19}}}{2}$;
解法3:由AB=5,得AC=3,
在△ABC中,由余弦定理得:BC2=AB2+AC2-2AB•ACcos∠BAC=25+9+15=49,
得BC=7,
在△ABC中,$cos∠ACB=\frac{{A{C^2}+B{C^2}-A{B^2}}}{2AC•BC}=\frac{9+49-25}{2×3×7}=\frac{11}{14}$,
在△ADC中,由$A{D^2}=A{C^2}+C{D^2}-2AC•CDcos∠ACD=9+\frac{49}{4}-2×3×\frac{7}{2}×\frac{11}{14}=\frac{19}{4}$,
解得$AD=\frac{{\sqrt{19}}}{2}$.

点评 本题考查平面向量的数量积运算,考查了正弦定理和余弦定理在解三角形中的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.用反证法证明某命题时,对其结论:“自然数a、b、c中恰有一个奇数”正确的反设为(  )
A.a、b、c都是奇数
B.a、b、c都是偶数
C.a、b、c中至少有两个奇数
D.a、b、c中至少有两个奇数或都是偶数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若不等式组$\left\{{\begin{array}{l}{x+3y-4≥0}\\{3x+y-4≤0}\\{x≥0}\end{array}}\right.$所表示的平面区域被直线y=kx+$\frac{4}{3}$分为面积相等的两部分,则k的值是(  )
A.$\frac{3}{7}$B.$\frac{7}{3}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知复数$z=\frac{2i}{1-i}$(i为虚数单位),z的共轭复数为$\overline{z}$,则$z+\overline{z}$=(  )
A.2iB.-2iC.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知命题p:?x∈R,cosx>sinx,命题q:?x∈(0,π),sinx+$\frac{1}{sinx}$>2,则下列判断正确的是(  )
A.命题p∨q是假命题B.命题p∧q是真命题
C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,满足a1=$\frac{1}{3},{S_{n+1}}={S_n}+4{a_n}$+3.
(Ⅰ)证明:{an+1}是等比数列;
(Ⅱ)求数列{an}的前n项和为Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设椭圆$\frac{{x}^{2}}{4}$+y2=1的右顶点为A,过椭圆长轴所在直线上的一个定点M(m,0)(不同于A)任作一条直线与椭圆相交于P、Q两点,直线AP、AQ的斜率分别记为k1、k2
(1)当PQ⊥x轴时,求$\overrightarrow{AP}•\overrightarrow{AQ}$;
(2)求证:k1•k2等于定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设各项均为正数的数列{an}的前n项之积为Tn,若T=${2}^{{n}^{2}-n}$,则数列{$\frac{{a}_{n}+63}{{2}^{n-1}}$}中最小项的序号n=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{\begin{array}{l}{2x+\frac{4}{x}+m(x>0)}\\{{2}^{x}+m(x≤0)}\end{array}\right.$,若方程f(x)=-2x有且只有一个实数根,则实数m的取值范围为m≥-1或m=-8.

查看答案和解析>>

同步练习册答案